首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   1篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2012年   6篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2006年   2篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1992年   1篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
The emerging resistance to artemisinin derivatives that has been reported in South-East Asia led us to assess the efficacy of artemether-lumefantrine as the first line therapy for uncomplicated Plasmodium falciparum infections in Suriname. This drug assessment was performed according to the recommendations of the World Health Organization in 2011. The decreasing number of malaria cases in Suriname, which are currently limited to migrating populations and gold miners, precludes any conclusions on artemether efficacy because adequate numbers of patients with 28-day follow-up data are difficult to obtain. Therefore, a comparison of day 3 parasitaemia in a 2011 study and in a 2005/2006 study was used to detect the emergence of resistance to artemether. The prevalence of day 3 parasitaemia was assessed in a study in 2011 and was compared to that in a study in 2005/2006. The same protocol was used in both studies and artemether-lumefantrine was the study drug. Of 48 evaluable patients in 2011, 15 (31%) still had parasitaemia on day 3 compared to one (2%) out of 45 evaluable patients in 2005/2006. Overall, 11 evaluable patients in the 2011 study who were followed up until day 28 had negative slides and similar findings were obtained in all 38 evaluable patients in the 2005/2006 study. The significantly increased incidence of parasite persistence on day 3 may be an indication of emerging resistance to artemether.  相似文献   
2.
Russian Journal of Genetics - Genetic diversity of diploid grass Ae. tauschii Coss (2n = 2x = 14, DD), the D-genome progenitor of common wheat, was assessed using fluorescence in situ hybridization...  相似文献   
3.
4.

Background

Cytokinin is a plant hormone that plays a crucial role in several processes of plant growth and development. In recent years, major breakthroughs have been achieved in the elucidation of the metabolism, the signal perception and transduction, as well as the biological functions of cytokinin. An important activity of cytokinin is the involvement in chloroplast development and function. Although this biological function has already been known for 50 years, the exact mechanisms remain elusive.

Results

To elucidate the effects of altered endogenous cytokinin content on the structure and function of the chloroplasts, chloroplast subfractions (stroma and thylakoids) from transgenic Pssu-ipt and 35S:CKX1 tobacco (Nicotiana tabacum) plants with, respectively, elevated and reduced endogenous cytokinin content were analysed using two different 2-DE approaches. Firstly, thykaloids were analysed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (BN/SDS-PAGE). Image analysis of the gel spot pattern thus obtained from thylakoids showed no substantial differences between wild-type and transgenic tobacco plants. Secondly, a quantitative DIGE analysis of CHAPS soluble proteins derived from chloroplast subfractions indicated significant gel spot abundance differences in the stroma fraction. Upon identification by MALDI-TOF/TOF mass spectrometry, these proteins could be assigned to the Calvin-Benson cycle and photoprotective mechanisms.

Conclusion

Taken together, presented proteomic data reveal that the constitutively altered cytokinin status of transgenic plants does not result in any qualitative changes in either stroma proteins or protein complexes of thylakoid membranes of fully developed chloroplasts, while few but significant quantitative differences are observed in stroma proteins.  相似文献   
5.

Background

The karyotypes of Leptodactylus species usually consist of 22 bi-armed chromosomes, but morphological variations in some chromosomes and even differences in the 2n have been reported. To better understand the mechanisms responsible for these differences, eight species were analysed using classical and molecular cytogenetic techniques, including replication banding with BrdU incorporation.

Results

Distinct chromosome numbers were found: 2n = 22 in Leptodactylus chaquensis, L. labyrinthicus, L. pentadactylus, L. petersii, L. podicipinus, and L. rhodomystax; 2n = 20 in Leptodactylus sp. (aff. podicipinus); and 2n = 24 in L. marmoratus. Among the species with 2n = 22, only three had the same basic karyotype. Leptodactylus pentadactylus presented multiple translocations, L. petersii displayed chromosome morphological discrepancy, and L. podicipinus had four pairs of telocentric chromosomes. Replication banding was crucial for characterising this variability and for explaining the reduced 2n in Leptodactylus sp. (aff. podicipinus). Leptodactylus marmoratus had few chromosomes with a similar banding patterns to the 2n = 22 karyotypes. The majority of the species presented a single NOR-bearing pair, which was confirmed using Ag-impregnation and FISH with an rDNA probe. In general, the NOR-bearing chromosomes corresponded to chromosome 8, but NORs were found on chromosome 3 or 4 in some species. Leptodactylus marmoratus had NORs on chromosome pairs 6 and 8. The data from C-banding, fluorochrome staining, and FISH using the telomeric probe helped in characterising the repetitive sequences. Even though hybridisation did occur on the chromosome ends, telomere-like repetitive sequences outside of the telomere region were identified. Metaphase I cells from L. pentadactylus confirmed its complex karyotype constitution because 12 chromosomes appeared as ring-shaped chain in addition to five bivalents.

Conclusions

Species of Leptodactylus exhibited both major and minor karyotypic differences which were identified by classical and molecular cytogenetic techniques. Replication banding, which is a unique procedure that has been used to obtain longitudinal multiple band patterns in amphibian chromosomes, allowed us to outline the general mechanisms responsible for these karyotype differences. The findings also suggested that L. marmoratus, which was formerly included in the genus Adenomera, may have undergone great chromosomal repatterning.
  相似文献   
6.
A membrane protein complex, succinate dehydrogenase (SQR) from Escherichia coli has been purified and crystallised. This enzyme is composed of four subunits containing FAD, three iron-sulphur clusters and one haem b as prosthetic groups. The obtained crystals belong to the hexagonal space group P6(3) with the unit-cell dimensions of a=b=123.8 A and c=214.6 A. An asymmetric unit of the crystals contains one SQR monomer (M(r) 120 kDa). A data set is now available at 4.0 A resolution with 88.1% completeness and 0.106 R(merge). We have obtained a molecular replacement solution that shows sensible molecular packing, using the soluble domain of E. coli QFR (fumarate reductase) as a search model. The packing suggests that E. coli SQR is a crystallographic trimer rather than a dimer as observed for the E. coli QFR.  相似文献   
7.
L-Lactate dehydrogenase (L-LDH, E.C. 1.1.1.27) is encoded by two or three loci in all vertebrates examined, with the exception of lampreys, which have a single LDH locus. Biochemical characterizations of LDH proteins have suggested that a gene duplication early in vertebrate evolution gave rise to Ldh-A and Ldh-B and that an additional locus, Ldh-C arose in a number of lineages more recently. Although some phylogenetic studies of LDH protein sequences have supported this pattern of gene duplication, others have contradicted it. In particular, a number of studies have suggested that Ldh-C represents the earliest divergence among vertebrate LDHs and that it may have diverged from the other loci well before the origin of vertebrates. Such hypotheses make explicit statements about the relationship of vertebrate and invertebrate LDHs, but to date, no closely related invertebrate LDH sequences have been available for comparison. We have attempted to provide further data on the timing of gene duplications leading to multiple vertebrate LDHs by determining the cDNA sequence of the LDH of the tunicate Styela plicata. Phylogenetic analyses of this and other LDH sequences provide strong support for the duplications giving rise to multiple vertebrate LDHs having occurred after vertebrates diverged from tunicates. The timing of these LDH duplications is consistent with data from a number of other gene families suggesting widespread gene duplication near the origin of vertebrates. With respect to the relationships among vertebrate LDHs, our data are not consistent with previous claims that Ldh-C represented the earliest divergence. However, the precise relationships among some of the main lineages of vertebrate LDHs were not resolved in our analyses.   相似文献   
8.
9.
The transfer of electrons and protons between membrane-bound respiratory complexes is facilitated by lipid-soluble redox-active quinone molecules (Q). This work presents a structural analysis of the quinone-binding site (Q-site) identified in succinate:ubiquinone oxidoreductase (SQR) from Escherichia coli. SQR, often referred to as Complex II or succinate dehydrogenase, is a functional member of the Krebs cycle and the aerobic respiratory chain and couples the oxidation of succinate to fumarate with the reduction of quinone to quinol (QH(2)). The interaction between ubiquinone and the Q-site of the protein appears to be mediated solely by hydrogen bonding between the O1 carbonyl group of the quinone and the side chain of a conserved tyrosine residue. In this work, SQR was co-crystallized with the ubiquinone binding-site inhibitor Atpenin A5 (AA5) to confirm the binding position of the inhibitor and reveal additional structural details of the Q-site. The electron density for AA5 was located within the same hydrophobic pocket as ubiquinone at, however, a different position within the pocket. AA5 was bound deeper into the site prompting further assessment using protein-ligand docking experiments in silico. The initial interpretation of the Q-site was re-evaluated in the light of the new SQR-AA5 structure and protein-ligand docking data. Two binding positions, the Q(1)-site and Q(2)-site, are proposed for the E. coli SQR quinone-binding site to explain these data. At the Q(2)-site, the side chains of a serine and histidine residue are suitably positioned to provide hydrogen bonding partners to the O4 carbonyl and methoxy groups of ubiquinone, respectively. This allows us to propose a mechanism for the reduction of ubiquinone during the catalytic turnover of the enzyme.  相似文献   
10.
Three new structures of Escherichia coli succinate-quinone oxidoreductase (SQR) have been solved. One with the specific quinone-binding site (Q-site) inhibitor carboxin present has been solved at 2.4 Å resolution and reveals how carboxin inhibits the Q-site. The other new structures are with the Q-site inhibitor pentachlorophenol and with an empty Q-site. These structures reveal important details unresolved in earlier structures. Comparison of the new SQR structures shows how subtle rearrangements of the quinone-binding site accommodate the different inhibitors. The position of conserved water molecules near the quinone binding pocket leads to a reassessment of possible water-mediated proton uptake networks that complete reduction of ubiquinone. The dicarboxylate-binding site in the soluble domain of SQR is highly similar to that seen in high resolution structures of avian SQR (PDB 2H88) and soluble flavocytochrome c (PDB 1QJD) showing mechanistically significant structural features conserved across prokaryotic and eukaryotic SQRs.Succinate:quinone oxidoreductase (SQR,4 succinate dehydrogenase) and menaquinol:fumarate oxidoreductase (QFR, fumarate reductase), members of the Complex II family, are homologous integral membrane proteins which couple the interconversion of succinate and fumarate with quinone and quinol (14). SQR is a key enzyme in the Krebs cycle, oxidizing succinate to fumarate during aerobic growth and reducing quinone to quinol and, thus, acts as a direct link between the Krebs cycle and the respiratory chain. QFR is found in anaerobic or facultative bacteria and lower eukaryotes, where it couples the oxidation of reduced quinones to the reduction of fumarate (1, 4). Escherichia coli SQR has four subunits, two hydrophilic subunits exposed to the cytoplasm (SdhA and SdhB), which interact with two hydrophobic membrane-intrinsic subunits (SdhC and SdhD) (5). SdhA contains the dicarboxylate-binding site and a covalently bound FAD cofactor which cycles between FAD and FADH2 redox states during succinate oxidation (6). The electrons from succinate oxidation are sequentially transferred via a [2Fe-2S], a [4Fe-4S], and a [3Fe-4S] iron-sulfur cluster relay system in SdhB to a quinone-binding site (QP) located at the interface of the SdhB, SdhC, and SdhD subunits. SdhC and SdhD are both composed of three transmembrane helices and coordinate a low spin b-type heme via His residues contributed by each subunit (7, 8).The first structural information about members of the Complex II family came from x-ray structures of the QFR enzymes from E. coli at 3.3 Å resolution (9) and Wolinella succinogenes at 2.2 Å resolution (10). These structures revealed details of the overall architecture of the subunits, the position of key redox cofactors, the electron transfer pathway, and the quinone-binding sites. At around the same time, the structures of soluble fumarate reductases found in anaerobic and microaerophilic bacteria and structurally homologous to the flavoprotein subunit of Complex II were solved by x-ray crystallography (1). Analysis of these soluble fumarate reductases has proven particularly informative in describing the mechanism of fumarate reduction and succinate oxidation at the dicarboxylate-binding site (1114).Structures of SQRs lagged behind those of the QFRs until the structure of the E. coli enzyme was solved at 2.6 Å (15). This structure, solved in space group R32, revealed that the E. coli enzyme is packed as a trimer. The structures of the SdhA and SdhB subunits were highly similar to those of E. coli and W. succinogenes QFRs, but the transmembrane SdhC and SdhD subunits showed differences compared with their QFR counterparts. The structure revealed the position of the redox sites and the dicarboxylate- and quinone-binding (Q) sites. The heme b molecule was shown to lie away from the electron transfer pathway, suggesting electrons are preferentially transferred from the [3Fe-4S] cluster to ubiquinone, on the grounds of the edge-to-edge distances and redox potentials of the relevant groups. The structure revealed density in the Q-site that was interpreted as ubiquinone, and the position of the binding site was confirmed by the structure of the E. coli enzyme co-crystallized with the Q-site inhibitor 2-(1-methyl-hexyl)-4,6-dinitrophenol (DNP-17, PDB code 1NEN (15)). The E. coli enzyme was subsequently co-crystallized with the Q-site inhibitor Atpenin A5 (AA5) (PDB code 2ACZ (16)). This inhibitor was bound deeper into the quinone-binding site than ubiquinone or DNP-17, suggesting that there are two binding positions for ubiquinone in its binding site. The structure also identified a water-mediated proton pathway, proposed to deliver protons to the quinone-binding site. The first structure of a mitochondrial SQR was from porcine heart at 2.4 Å resolution (PDB code 1ZOY (17). This structure revealed a monomer in the asymmetric unit, suggesting that mitochondrial SQRs were likely to function as monomers. Superposition of the porcine and E. coli SQR structures revealed the high structural similarity of the SdhA and SdhB subunits and the conservation in position of the redox cofactors. Larger divergences were observed in the transmembrane subunits.Further structural information about SQRs was obtained by analysis of structures of avian SQR crystallized with oxaloacetate (2.2 Å resolution, PDB code 1YQ3), with 3-nitropropionate (2.4 Å resolution, PDB code 1YQ4), and with the Q-site inhibitor carboxin (2.1 Å resolution, PDB code 2FBW) (18). These structures revealed important differences in the position of key residues in the dicarboxylate-binding site compared with the E. coli and porcine structures. Arg-297 (equivalent to Arg-298 in porcine and Arg-286 in E. coli SQRs) was ideally located to act as a general base catalyst, accepting a proton during dehydrogenation of succinate, as in the soluble Shewanella flavocytochrome c3 (PDB code 1QJD) (11), suggesting conservation of mechanism between these distantly related enzymes. An unusual cis-serine peptide bond was proposed to position another arginine residue for binding dicarboxylates. Density for the dicarboxylate in 1YQ3 and 2FBW was shown to be distinctly non-planar and could be modeled by the “malate-like intermediate” seen in 1QJD. The nature of the ligand in the dicarboxylate site was further analyzed in a 1.74 Å resolution structure of avian SQR (PDB code 2H88), confirming the high structural similarity of the ligand and binding site residues in the SQR and flavocytochrome c3 structures (11, 12, 14).Despite the structural information described above, there are still unresolved issues regarding the structure and function of SQRs and QFRs. These include the location of conserved waters, which may form a channel involved in protonation of quinone, and the ability of the Q-site to accommodate different quinones and inhibitors. To further address these issues, we pursued structure-function studies of E. coli SQR. We developed alternative crystallization conditions that provided crystals more reproducibly and diffracting to higher resolution. By exchanging the enzyme into decyl-β-d-maltoside (DM) during purification, it was possible to crystallize the enzyme in the orthorhombic P212121 space group. These crystals routinely diffracted in the 3–3.5 Å resolution range. Co-crystallization with the biochemically well characterized Q-site inhibitor carboxin improved diffraction to 2.1–2.8 Å. This structure shows new features related to the dicarboxylate-binding site of E. coli SQR including a rare cis-peptide bond in SdhA, as found in avian SQR (14), which helps shape the geometry of the active site. Comparisons of the structure with those of SQR binding PCP and SQR with an empty Q-site show how subtle rearrangements of the Q-site accommodate the different inhibitors. The orientation of carboxin in the Q-site differs with computational predictions (16) and with that seen in avian SQR (2FBW). The position of conserved water molecules around the Q-site suggests a new water-mediated proton uptake pathway consistent with recent mutational and biophysical studies (19).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号