首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2019年   1篇
  2007年   1篇
  2004年   1篇
  2002年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
An enzymatic fluorometric assay for pyridoxal with pyridoxal dehydrogenase was developed. The detection limit was about 10 pmol: the calibration curve of pyridoxal showed high linearity (r=0.993). The values obtained by this method correlated well with those by the HPLC method. The enzyme had a high specificity for pyridoxal, and thus animal samples could be directly analyzed without separation of pyridoxal 5'-phosphate by column chromatography.  相似文献   
2.
A pyridoxal dehydrogenase was purified to homogeneity from Aureobacterium luteolum, which can use pyridoxine as a carbon and nitrogen source, and characterized. The enzyme was a dimeric protein with a subunit molecular weight of 38,000. It had several properties distinct from those of the partially purified enzyme from Pseudomonas MA-1. The optimum pH (8.0-8.5) was 0.8-1.3 lower than that of the Pseudomonas enzyme. The Aureobacterium enzyme showed much higher and lower affinities for NAD+ (Km, 0.140 +/- 0.008 mM) and pyridoxal (0.473 +/- 0.109 mM), respectively, than those of the Pseudomonas enzyme. The Aureobacterium enzyme could use NADP+ as a substrate: the reactivity was 6.5% of NAD+. The enzyme was much more tolerant to metal-chelating agents. Irreversibility of the enzymatic reaction was shared by the two enzymes. No aldehyde dehydrogenase showed similarity to the amino-terminal amino acid sequence of the enzyme.  相似文献   
3.
4.
Periodontal ligament (PDL) cells are mechanosensitive and have the potential to differentiate into osteoblast-like cells under the influence of cyclic tensile force (CTF). CTF modulates the expression of regulatory proteins including bone morphogenetic proteins (BMPs), which are essential for the homeostasis of the periodontium. Among the BMPs, BMP9 is one of the most potent osteogenic BMPs. It is yet unknown whether CTF affects the expression of BMP9 and mineralization. Here, we demonstrated that continuously applied CTF for only the first 6 hr stimulated the synthesis of BMP9 and induced mineral deposition within 14 days by human PDL cells. Stimulation of BMP9 expression depended on ATP and P2Y 1 receptors. Apyrase, an ecto-ATPase, inhibited CTF-mediated ATP-induced BMP9 expression. The addition of ATP increased the expression of BMP9. Loss of function experiments using suramin (a broad-spectrum P2Y antagonist), MRS2179 (a specific P2Y 1 receptor antagonist), MRS 2365 (a specific P2Y 1 agonist), U-73122 (a phospholipase C [PLC] inhibitor), and thapsigargin (enhancer of intracytosolic calcium) revealed the participation of P2Y 1 in regulating the expression of BMP9. This was mediated by an increased level of intracellular Ca 2+ through the PLC pathway. A neutralizing anti-BMP9 antibody decreased mineral deposition, which was stimulated by CTF for almost 45% indicating a role of BMP9 in an in vitro mineralization. Collectively, our findings suggest an essential modulatory role of CTF in the homeostasis and regeneration of the periodontium.  相似文献   
5.
Microbacterium luteolum YK-1 has pyridoxine degradation pathway I. We have cloned the structural gene for the second step enzyme, pyridoxal 4-dehydrogenase. The gene consists of 1,026-bp nucleotides and encodes 342 amino acids. The enzyme was overexpressed under cold shock conditions with a coexpression system and chaperonin GroEL/ES. The recombinant enzyme showed the same properties as the M. luteolum enzyme. The primary sequence of the enzyme was 54% identical with that of d-threo-aldose 1-dehydrogenase from Agrobacterium tumefaciens, a probable aldo-keto reductase (AKR). Upon multiple alignment with enzymes belonging to the 14 AKR families so far reported, pyridoxal 4-dehydrogenase was found to form a new AKR superfamily (AKR15) together with A. tumefaciens d-threo-aldose 1-dehydrogenase and Pseudomonas sp. l-fucose dehydrogenase. These enzymes belong to a distinct branch from the two main ones found in the phylogenic tree of AKR proteins. The enzymes on the new branch are characterized by their inability to reduce the corresponding lactones, which are produced from pyridoxal or sugars. Furthermore, pyridoxal 4-dehydrogenase prefers NAD(+) to NADP(+) as a cofactor, although AKRs generally show higher affinities for the latter.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号