首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  1987年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Cassava, bean and maize leaves were fed with14CO2 in light and the primary products of photosynthesis identified 5 and 10 seconds after assimilation. In maize, approximately three quarters of the labelled carbon was incorporated in C4 acids, in beans about two thirds in PGA, and in cassava approximately 40–60% in C4 acids with 30–50% in PGA. These data indicate that cassava possesses the C4 photosynthetic cycle, however due to the lack of typical Kranz anatomy appreciable carbon assimilation takes place directly through the Calvin-Benson-Bassham cycle.  相似文献   
2.
An indeterminate developmental program allows plant organs to grow continuously by maintaining functional meristems over time. The molecular mechanisms involved in the maintenance of the root apical meristem are not completely understood. We have identified a new Arabidopsis thaliana mutant named moots koom 1 (mko1) that showed complete root apical meristem exhaustion of the primary root by 9?days post-germination. MKO1 is essential for maintenance of root cell proliferation. In the mutant, cell division is uncoupled from cell growth in the region corresponding to the root apical meristem. We established the sequence of cellular events that lead to meristem exhaustion in this mutant. Interestingly, the SCR and WOX5 promoters were active in the mko1 quiescent center at all developmental stages. However, during meristem exhaustion, the mutant root tip showed defects in starch accumulation in the columella and changes in auxin response pattern. Therefore, contrary to many described mutants, the determinate growth in mko1 seedlings does not appear to be a consequence of incorrect establishment or affected maintenance of the quiescent center but rather of cell proliferation defects both in stem cell niche and in the rest of the apical meristem. Our results support a model whereby the MKO1 gene plays an important role in the maintenance of the root apical meristem proliferative capacity and indeterminate root growth, which apparently acts independently of the SCR/SHR and WOX5 regulatory pathways.  相似文献   
3.
Ecological niche models provide useful predictions of species distributions, but may fail to detect reductions in distribution due to factors other than habitat loss, such as hunting or trade. From 2001 to 2009, we conducted field-surveys along the Mexican Pacific coast to obtain presence–absence data for nine Psittacidae species. We applied Genetic Algorithm for Rule set Prediction (GARP) ecological niche modeling, using field-survey presence data to determine the potential current distribution of each species, and incorporated absence data to delineate extirpation areas. All parrot species showed a reduced current distribution, ranging from 9.6 to 79% reduction of estimated original distribution. The threatened and endemic species of Amazona oratrix, Amazona finschi, and Forpus cyanopygius suffered the greatest distribution reduction, higher than previously estimated by habitat-based models, suggesting that capture for trade may have caused extirpation of these species. The greatest extent of current distribution was occupied by Aratinga canicularis, Amazona albifrons and Ara militaris, which continue to occur throughout most of their original distribution. Amazona auropalliata, Aratinga strenua, and Brotogeris jugularis also occur throughout their restricted distribution in coastal Chiapas, and show a relatively small distribution reduction, but had the highest proportion of modified lands within their current distributions. Our results highlighted the regions of coastal Guerrero, northern Nayarit, and southern Sinaloa where parrot species have been extirpated even though GARP models predicted suitable habitat available. Ideally distribution models should be verified in the field to determine conservation priorities, and efforts should be directed to maintain populations of species with greatest distribution reductions.  相似文献   
4.

Background and Aims

The root meristem of the Arabidopsis thaliana mature embryo is a highly organized structure in which individual cell shape and size must be regulated in co-ordination with the surrounding cells. The objective of this study was to determine the role of the AUX1 LAX family of auxin import carriers during the establishment of the embryonic root cell pattern.

Methods

The radicle apex of single and multiple aux1 lax mutant mature embryos was used to evaluate the effect of this gene family upon embryonic root organization and root cap size, cell number and cell size.

Key Results

It was demonstrated here that mutations within the AUX1 LAX family are associated with changes in cell pattern establishment in the embryonic quiescent centre and columella. aux1 lax mutants have a larger radicle root cap than the wild type and this is associated with a significant increase in the root-cap cell number, average cell size, or both. Extreme disorganization of the radicle apex was observed among quadruple aux1 lax1 lax2 lax3 mutant embryos, but not in single aux1 null or in lax1, lax2 and lax3 single mutants, indicating redundancy within the AUX1 LAX family.

Conclusions

It was determined that the AUX1 LAX family of auxin influx facilitators participates in the establishment of cell pattern within the apex of the embryonic root in a gene-redundant fashion. It was demonstrated that aux1 lax mutants are affected in cell proliferation and cell growth within the radicle tip. Thus AUX1 LAX auxin importers emerge as new players in morphogenetic processes involved in patterning during embryonic root formation.Key words: AUX1 LAX genes, auxin, Arabidopsis thaliana, embryogenesis, meristem, radicle development, cell pattern establishment  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号