首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   15篇
  2024年   1篇
  2023年   12篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   7篇
  2018年   6篇
  2017年   7篇
  2016年   4篇
  2015年   12篇
  2014年   13篇
  2013年   16篇
  2012年   13篇
  2011年   4篇
  2010年   5篇
  2009年   12篇
  2008年   6篇
  2007年   20篇
  2006年   5篇
  2005年   8篇
  2004年   11篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1984年   1篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1963年   1篇
排序方式: 共有230条查询结果,搜索用时 468 毫秒
1.
The first 46 amino acids (aa) of the N terminus of the rabbit heart (RH) L-type cardiac Ca(2+) channel alpha(1C) subunit are crucial for the stimulating action of protein kinase C (PKC) and also hinder channel gating (Shistik, E., Ivanina, T., Blumenstein, Y., and Dascal, N. (1998) J. Biol. Chem. 273, 17901-17909). The mechanism of PKC action and the location of the PKC target site are not known. Moreover, uncertainties in the genomic sequence of the N-terminal region of alpha(1C) leave open the question of the presence of RH-type N terminus in L-type channels in mammalian tissues. Here, we demonstrate the presence of alpha(1C) protein containing an RH-type initial N-terminal segment in rat heart and brain by using a newly prepared polyclonal antibody. Using deletion mutants of alpha(1C) expressed in Xenopus oocytes, we further narrowed down the part of the N terminus crucial for both inhibitory gating and for PKC effect to the first 20 amino acid residues, and we identify the first 5 aa as an important determinant of PKC action and of N-terminal effect on gating. The absence of serines and threonines in the first 5 aa and the absence of phosphorylation by PKC of a glutathione S-transferase-fusion protein containing the initial segment suggest that the effect of PKC does not arise through a direct phosphorylation of this segment. We propose that PKC acts by attenuating the inhibitory action of the N terminus via phosphorylation of a remote site, in the channel or in an auxiliary protein, that interacts with the initial segment of the N terminus.  相似文献   
2.
The purpose of the present study was to examine whether breathing pattern may be used as a reliable index for the effectiveness of techniques applied for the regulation of mental states. Heart rate (HR), breathing pattern, galvanic skin response (GSR), and electromyogram (EMG) of the frontalis muscle were measured in 39 male and female subjects aged 18–25 years during 10-minute treatment with relaxation technique (autogenic training and/or music) followed by 10 minutes of imagery training. In the first 7 sessions biofeedback (BFB) was not included, while during the last 6 sessions BFB was introduced and utilized by the subjects. Relaxation (music or autogenic training) led to a decrease in breathing frequency, attributed to lengthening of expiration time, as well as reduced HR, GSR, and frontalis EMG response. In most instances imagery training was related to an increase in these indices. Specifically, significant tachypnea was observed during imagery of sprint running. In most cases BFB substantially augmented the physiological responses. In conclusion, our data suggest that, compared with HR, GSR, and EMG responses, the breathing pattern is at least as sensitive to the mental techniques employed, and may be useful as a psychophysiological index for diagnosis and testing, especially in sport practice.  相似文献   
3.
Mineralization of dissolved organic matter (DOM) in thermokarst lakes plays a non-negligible role in the permafrost carbon (C) cycle, but remains poorly understood due to its complex interactions with external C and nutrient inputs (i.e., aquatic priming and nutrient effects). Based on large-scale lake sampling and laboratory incubations, in combination with 13C-stable-isotope labeling, optical spectroscopy, and high-throughput sequencing, we examined large-scale patterns and dominant drivers of priming and nutrient effects of DOM biodegradation across 30 thermokarst lakes along a 1100-km transect on the Tibetan Plateau. We observed that labile C and phosphorus (P) rather than nitrogen (N) inputs stimulated DOM biodegradation, with the priming and P effects being 172% and 451% over unamended control, respectively. We also detected significant interactive effects of labile C and nutrient supply on DOM biodegradation, with the combined labile C and nutrient additions inducing stronger microbial mineralization than C or nutrient treatment alone, illustrating that microbial activity in alpine thermokarst lakes is co-limited by both C and nutrients. We further found that the aquatic priming was mainly driven by DOM quality, with the priming intensity increasing with DOM recalcitrance, reflecting the limitation of external C as energy sources for microbial activity. Greater priming intensity was also associated with higher community-level ribosomal RNA gene operon (rrn) copy number and bacterial diversity as well as increased background soluble reactive P concentration. In contrast, the P effect decreased with DOM recalcitrance as well as with background soluble reactive P and ammonium concentrations, revealing the declining importance of P availability in mediating DOM biodegradation with enhanced C limitation but reduced nutrient limitation. Overall, the stimulation of external C and P inputs on DOM biodegradation in thermokarst lakes would amplify C-climate feedback in this alpine permafrost region.  相似文献   
4.
Wu  Lipeng  Wang  Yidong  Zhang  Shirong  Wei  Wenliang  Kuzyakov  Yakov  Ding  Xiaodong 《Plant and Soil》2021,463(1-2):523-535
Plant and Soil - Soil was sampled (0–20 cm) from a 5-year Yellow River Delta paddy field experiment: no fertilizers (Control), mineral fertilizers (NPK), and NPK plus organic...  相似文献   
5.

Background

The bone marrow (BM) of breast cancer patients harbors tumor-reactive memory T cells (TCs) with therapeutic potential. We recently described the immunologic effects of adoptive transfer of ex vivo restimulated tumor-reactive memory TCs from the BM of 12 metastasized breast cancer patients in a clinical phase-I study. In this trial, adoptive T cell transfer resulted in the occurrence of circulating tumor antigen-reactive type-1 TCs. We here describe the long-term clinical outcome and its correlation with tumor-specific cellular immune response in 16 metastasized breast cancer patients, including 12 included in the original study.

Methods

Sixteen metastatic breast cancer patients with preexisting tumor-reactive BM memory TCs were included into the study. The study protocol involved one transfusion of TCs which were reactivated in vitro with autologous dendritic cells pulsed with lysates of MCF-7 breast cancer cells as source of tumor antigens. The presence of tumor-reactive memory TCs was analyzed by IFN-γ ELISpot assays.

Results

Tumor-reactive memory TCs in the peripheral blood were induced de novo in 7/16 patients (44 %) after adoptive TC transfer. These patients were considered immunologic responders to the therapy. Positive adoptive immunotherapy (ADI) response was observed significantly more often in patients without bone metastases (p = 0.0051), in patients with high levels of tumor-reactive BM TCs prior to therapy (p = 0.036) and correlated significantly with the estimated numbers of transferred tumor-reactive TCs (p = 0.0021). After the treatment, we observed an overall median survival of 33.8 months in the total cohort with three patients alive at last follow-up and more than 7 years after ADI. Numbers of transferred tumor-reactive TCs correlated significantly with the overall survival of patients (p = 0.017). Patients with an immunologic response to ADI in the peripheral blood had a significantly longer median survival than nonresponders (median survival 58.6 vs. 13.6 months; p = 0.009).

Conclusion

In metastasized breast cancer patients, adoptive transfer of BM TCs can induce the presence of tumor antigen-reactive type-1 TCs in the peripheral blood. Patients with immunologic response after ADI show a significantly longer overall survival. Patients with bone metastases significantly less frequently respond to the treatment and, therefore, might not be optimal candidates for ADI. Although the present study does not yet prove the therapeutic effect of ADI, these findings shed light on the relation between immune response and cancer prognosis and suggest that transfer of reactivated BM TCs might bear therapeutic potential.  相似文献   
6.

Background and Aims

Below-ground translocated carbon (C) released as rhizodeposits is an important driver for microbial mobilization of nitrogen (N) for plants. We investigated how a limited substrate supply due to reduced photoassimilation alters the allocation of recently assimilated C in plant and soil pools under legume and non-legume species.

Methods

A non-legume (Lolium perenne) and a legume (Medicago sativa) were labelled with 15N before the plants were clipped or shaded, and labelled twice with 13CO2 thereafter. Ten days after clipping and shading, the 15N and 13C in shoots, roots, soil, dissolved organic nitrogen (DON) and carbon (DOC) and in microbial biomass, as well as the 13C in soil CO2 were analyzed.

Results

After clipping, about 50 % more 13C was allocated to regrowing shoots, resulting in a lower translocation to roots compared to the unclipped control. Clipping also reduced the total soil CO2 efflux under both species and the 13C recovery of soil CO2 under L. perenne. The 15N recovery increased in the shoots of M. sativa after clipping, because storage compounds were remobilized from the roots and/or the N uptake from the soil increased. After shading, the assimilated 13C was preferentially retained in the shoots of both species. This caused a decreased 13C recovery in the roots of M. sativa. Similarly, the total soil CO2 efflux under M. sativa decreased more than 50 % after shading. The 15N recovery in plant and soil pools showed that shading has no effect on the N uptake and N remobilization for L. perenne, but, the 15N recovery increased in the shoot of M. sativa.

Conclusions

The experiment showed that the dominating effect on C and N allocation after clipping is the need of C and N for shoot regrowth, whereas the dominating effect after shading is the reduced substrate supply for growth and respiration. Only slight differences could be observed between L. perenne and M. sativa in the C and N distribution after clipping or shading.  相似文献   
7.

Aims

Application of carbon (C) and nitrogen (N) isotopes is an essential tool to study C and N flows in plant-soil-microorganisms systems. When targeting single plants in a community the tracers need to be added via e.g., leaf-labeling or stem-feeding approaches. In this study we: (i) investigated if bicarbonate can be used to introduce 14C (or 13C) into white clover and ryegrass, and (ii) compared the patterns of 14C and 15N allocation in white clover and ryegrass to evaluate the homogeneity of tracer distribution after two alternative labeling approaches.

Methods

Perennial ryegrass and white clover were pulse labeled with 15N urea via leaf-labeling and 14C either via a 14CO2 atm or with 14C bicarbonate through leaf-labeling. Plants were sampled 4 days after labeling and prepared for bulk isotope analysis and for 14C imaging to identify plant parts with high and low 14C activity. Subsequently, plant parts with high and low 14C activity were separated and analyzed for 15N enrichment.

Results

Bicarbonate applied by leaf-labeling efficiently introduced 14C into both white clover and ryegrass, although the 14C activity in particular for white clover was found predominantly in the labeled leaf. Using 14C imaging for identification of areas with high (hotspots) and low 14C activity showed that 14C was incorporated very heterogeneously both when using bicarbonate and CO2 as expected when using pulse labeling. Subsequent analysis of 15N enrichment in plant parts with high and low 14C activity showed that 15N also had a heterogeneous distribution (up to two orders of magnitude).

Conclusion

Bicarbonate can efficiently be used to introduce 14C or 13C into plant via the leaf-labeling method. Both 14C and 15N showed heterogeneous distribution in the plant, although the distribution of 15N was more even than that of 14C.  相似文献   
8.
A set of racemic N-phenyl-substituted β-amidoamidines hydrochlorides 4, which are structurally related to natural antiviral agent amidinomycin (1), was synthesized in four steps starting from methacryloyl anilide (5). In the final step of the synthetic route, an uncommon monoacylation of β-aminoamidine 8 at the less reactive β-phenylamino-group took place. To rationalize this result, a mechanism which involves initial acylation at the more active amidine-function followed by intramolecular acyl-group transfer to β-phenylamino-group was suggested. All three β-amidoamidines 4df bearing long linear aliphatic chain (from n-C8H17 to n-C12H25) revealed significant in vitro activity against influenza A virus (H3N2) and modest cytotoxicity. The in vitro antiviral potency of 4d,e is 6–20 times greater than that of commercial rimantadine with lower EC50 values and higher therapeutic index. The non-toxic in vivo compounds 4df showed a beneficial protective effect in influenza A (H3N2) infected mice.  相似文献   
9.

Introduction

Root-mediated changes in soil organic matter (SOM) decomposition, termed rhizosphere priming effects (RPE), play crucial roles in the global carbon (C) cycle, but their mechanisms and field relevance remain ambiguous. We hypothesize that nitrogen (N) shortages may intensify SOM decomposition in the rhizosphere because of increase of fine roots and rhizodeposition.

Methods

RPE and their dependence on N-fertilization were studied using a C3-to-C4 vegetation change. N-fertilized and unfertilized soil cores, with and without maize, were incubated in the field for 50 days. Soil CO2 efflux was measured, partitioned for SOM- and root-derived CO2, and RPE was calculated. Plant biomass, microbial biomass C (MBC) and N (MBN), and enzyme activities (β-1,4-glucosidase; N-acetylglucosaminidase; L-leucine aminopeptidase) were analyzed.

Results

Roots enhanced SOM mineralization by 35 % and 126 % with and without N, respectively. This was accompanied by higher specific root-derived CO2 in unfertilized soils. MBC, MBN and enzyme activities increased in planted soils, indicating microbial activation, causing positive RPE. N-fertilization had minor effects on MBC and MBN, but it reduced β-1,4-glucosidase and L-leucine aminopeptidase activities under maize through lower root-exudation. In contrast, N-acetylglucosaminidase activity increased with N-fertilization in planted and unplanted soils.

Conclusions

This study showed the field relevance of RPE and confirmed that, despite higher root biomass, N availability reduces RPE by lowering root and microbial activity.
  相似文献   
10.
Claudins     
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号