首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   16篇
  国内免费   27篇
  2024年   1篇
  2023年   6篇
  2022年   16篇
  2021年   14篇
  2020年   20篇
  2019年   20篇
  2018年   20篇
  2017年   12篇
  2016年   8篇
  2015年   12篇
  2014年   10篇
  2013年   9篇
  2012年   7篇
  2011年   6篇
  2010年   11篇
  2009年   7篇
  2008年   6篇
  2007年   2篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有219条查询结果,搜索用时 31 毫秒
1.
2.
比较研究几种兼性和专一性CAM植物材料的PEPC同工酶表明:经自然干旱诱导,兼性CAM植物露花(Mesembryanthemumcordifolium)、长药景天(Sudumspectabile)有新的PEPC同工酶的出现,诱导前后各同工酶的天然分子量变化不大;而土三七(Sedumaizoon)则没有新的PEPC同工酶出现,但诱导后其同工酶的天然分子量有所增大。以上几种兼性CAM植物的PEPC同工酶酶谱无明显昼夜变化。专一性CAM植物的PEPC酶谱和天然分子量均较一致,亦无昼夜差异。  相似文献   
3.
Noctiluca scintillans is one of the most common harmful algal species and widely known due to its bioluminescence. In this study, the spatial distribution, seasonal variations, and long-term trends of N. scintillans blooms in China and the related drivers were analyzed and discussed. From 1933 to 2020, a total of 265 events of N. scintillans blooms were recorded in Chinese coastal waters, with a total duration of 1052 days. The first N. scintillans bloom occurred in Zhejiang in 1933, and only three events were recorded before 1980. From 1981 to 2020, N. scintillans caused harmful algal blooms (HABs) almost every year, both the average duration and the proportion of multiphase HABs showed an increasing trend. 1986–1992, 2002–2004, and 2009–2016 were the three peak periods with a frequency of no less than five events of N. scintillans blooms per year. In terms of spatial distribution, N. scintillans blooms spread from the Southeast China Sea to the Bohai Sea after 2000, Guangdong, Fujian, and Hebei were the three provinces with the highest numbers of recorded events of N. scintillans blooms. Moreover, 86.8% of the events of N. scintillans blooms occurred in spring (March, April, and May) and summer (June, July, and August). Among environmental factors, the dissolved inorganic phosphate, dissolved silicate and chemical oxygen demand were significantly correlated with the cell density of N. scintillans during N. scintillans blooms, and most of N. scintillans blooms were recorded in the temperature range of 18.0–25.0°C. Precipitation, hydrodynamics, water temperature, and food availability might be the main factors affecting the spatial–temporal distribution of N. scintillans blooms along the Chinese coast.  相似文献   
4.
Multiplexed single‐cell protein secretion analysis provides an in‐depth understanding of cellular heterogeneity in intercellular communications mediated by secreted proteins in both fundamental and clinical research. However, it has been challenging to increase the proteomic parameters co‐profiled from every single cell in a facile way. Herein, a simple method to improve the multiplexed proteomic parameters of PDMS microwell based single‐cell secretion analysis platform by sandwiching PDMS stencil in between two antibody‐coated glass slides is introduced. Two different antibody panels can be immobilized easily by static coating, without using sophisticated fluid handling or bulky equipment. 5‐plexed, 3‐fluorescence color single‐cell secretion assay is demonstrated with this platform to investigate human monocytic U937 cells in response to lipopolysaccharide and phorbol myristate acetate stimulation, which identified the existence of functional subsets dictated by different cytokine profiles. The technology introduced here is simple, easy to operate, which holds great potential to become a powerful tool for profiling multiplexed single‐cell cytokine secretion at high throughput to dissect cellular heterogeneity in secretome signatures.  相似文献   
5.
Rapid adaptation to global change can counter vulnerability of species to population declines and extinction. Theoretically, under such circumstances both genetic variation and phenotypic plasticity can maintain population fitness, but empirical support for this is currently limited. Here, we aim to characterize the role of environmental and genetic diversity, and their prior evolutionary history (via haplogroup profiles) in shaping patterns of life history traits during biological invasion. Data were derived from both genetic and life history traits including a morphological analysis of 29 native and invasive populations of topmouth gudgeon Pseudorasbora parva coupled with climatic variables from each location. General additive models were constructed to explain distribution of somatic growth rate (SGR) data across native and invasive ranges, with model selection performed using Akaike's information criteria. Genetic and environmental drivers that structured the life history of populations in their native range were less influential in their invasive populations. For some vertebrates at least, fitness‐related trait shifts do not seem to be dependent on the level of genetic diversity or haplogroup makeup of the initial introduced propagule, nor of the availability of local environmental conditions being similar to those experienced in their native range. As long as local conditions are not beyond the species physiological threshold, its local establishment and invasive potential are likely to be determined by local drivers, such as density‐dependent effects linked to resource availability or to local biotic resistance.  相似文献   
6.
Elucidating the chromatin dynamics that orchestrate embryogenesis is a fundamental question in developmental biology. Here, we exploit position effects on expression as an indicator of chromatin activity and infer the chromatin activity landscape in every lineaged cell during Caenorhabditis elegans early embryogenesis. Systems‐level analyses reveal that chromatin activity distinguishes cellular states and correlates with fate patterning in the early embryos. As cell lineage unfolds, chromatin activity diversifies in a lineage‐dependent manner, with switch‐like changes accompanying anterior–posterior fate asymmetry and characteristic landscapes being established in different cell lineages. Upon tissue differentiation, cellular chromatin from distinct lineages converges according to tissue types but retains stable memories of lineage history, contributing to intra‐tissue cell heterogeneity. However, the chromatin landscapes of cells organized in a left–right symmetric pattern are predetermined to be analogous in early progenitors so as to pre‐set equivalent states. Finally, genome‐wide analysis identifies many regions exhibiting concordant chromatin activity changes that mediate the co‐regulation of functionally related genes during differentiation. Collectively, our study reveals the developmental and genomic dynamics of chromatin activity at the single‐cell level.  相似文献   
7.
Fatty acid–binding protein 3 (FABP3) facilitates the movement of fatty acids in cardiac muscle. Previously, we reported that FABP3 is highly upregulated in the myocardium of ventricular septal defect patients and overexpression of FABP3 inhibited proliferation and promoted apoptosis in embryonic carcinoma cells (P19 cells). In this study, we aimed to investigate the effect of FABP3 gene silencing on P19 cell differentiation, proliferation and apoptosis. We used RNA interference and a lentiviral-based vector system to create a stable FABP3-silenced P19 cell line; knockdown of FABP3 was confirmed by quantitative real-time PCR. Expression analysis of specific differentiation marker genes using quantitative real-time PCR and observation of morphological changes using an inverted microscope revealed that knockdown of FABP3 did not significantly affect the differentiation of P19 cells into cardiomyocytes. CCK-8 proliferation assays and cell cycle analysis demonstrated that FABP3 gene silencing significantly inhibited P19 cell proliferation. Furthermore, Annexin V-FITC/propidium iodide staining and the caspase-3 activity assay revealed that FABP3 gene silencing significantly promoted serum starvation–induced apoptosis in P19 cells. In agreement with our previous research, these results demonstrate that FABP3 may play an important role during embryonic heart development, and that either overexpression or silencing of FABP3 will lead to an imbalance between proliferation and apoptosis, which may result in embryonic cardiac malformations.  相似文献   
8.
Nonalcoholic fatty liver disease is associated with obesity and insulin resistance. Factors that regulate the disposal of hepatic triglycerides contribute to the development of hepatic steatosis. G0/G1 switch gene 2 (G0S2) is a target of peroxisome proliferator-activated receptors and plays an important role in regulating lipolysis in adipocytes. Therefore, we investigated whether G0S2 plays a role in hepatic lipid metabolism. Adenovirus-mediated expression of G0S2 (Ad-G0S2) potently induced fatty liver in mice. The liver mass of Ad-G0S2-infected mice was markedly increased with excess triglyceride content compared to the control mice. G0S2 did not change cellular cholesterol levels in hepatocytes. G0S2 was found to be co-localized with adipose triglyceride lipase at the surface of lipid droplets. Hepatic G0S2 overexpression resulted in an increase in plasma Low-density lipoprotein (LDL)/Very-Low-density (VLDL) lipoprotein cholesterol level. Plasma High-density lipoprotein (HDL) cholesterol and ketone body levels were slightly decreased in Ad-G0S2 injected mice. G0S2 also increased the accumulation of neutral lipids in cultured HepG2 and L02 cells. However, G0S2 overexpression in the liver significantly improved glucose tolerance in mice. Livers expressing G0S2 exhibited increased 6-(N-(7-nitrobenz-2-oxa-1-3-diazol-4-yl) amino)-6-deoxyglucose uptake compared with livers transfected with control adenovirus. Taken together, our results provide evidence supporting an important role for G0S2 as a regulator of triglyceride content in the liver and suggest that G0S2 may be a molecular target for the treatment of insulin resistance and other obesity-related metabolic disorders.  相似文献   
9.
Li  Wanting  Ye  Anqi  Ao  Luyao  Zhou  Lin  Yan  Yunyi  Hu  Yahui  Fang  Weirong  Li  Yunman 《Neurochemical research》2020,45(10):2258-2277
Neurochemical Research - Stroke is the fifth leading cause of death worldwide and is a main cause of disability in adults. Neither currently marketed drugs nor commonly used treatments can promote...  相似文献   
10.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality, metastasis accounts for most of the cases. Angiogenesis plays an important role in cancer metastasis, but how tumor cells affect the function of endothelial cells by dictating their microRNA (miRNA) expression remains largely unknown.Differentially expressed miRNAs (DEMs) were identified through dataset downloaded from the Gene Expression Omnibus (GEO) database and analyzed by GEO2R. We then used online tools to obtain potential targets of candidate miRNAs and functional enrichment analysis, as well as the protein-protein interaction (PPI). Finally, the function of miR-302c-3p was validated through in vitro assay.In the current study, we found that HCC cells altered miRNA expression profiles of human umbilical vein endothelial cells (HUVECs) and miR-302c-3p was the most down-regulated miRNA in HUVECs when they were co-cultured with HCC-LM3 cells. Functional enrichment analysis of the candidate targets revealed that these genes were involved in epigenetic regulation of gene expression, in particular, cytosine methylation. In addition, PPI network demonstrated distinct roles of genes targeted by miR-302c-3p. Importantly, inhibition of angiogenesis, migration and permeability by the most down-regulated miR-302c-3p in HUVECs was confirmed in vitro. These findings brought us novel insight into the regulation of angiogenesis by HCC cells and provided potential targets for the development of therapeutic strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号