首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   10篇
  145篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   9篇
  2012年   10篇
  2011年   8篇
  2010年   9篇
  2009年   4篇
  2008年   8篇
  2007年   6篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1985年   3篇
  1984年   1篇
  1978年   1篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
1.

Background

Typical enteropathogenic Escherichia coli (tEPEC) strains were associated with mortality in the Global Enteric Multicenter Study (GEMS). Genetic differences in tEPEC strains could underlie some of the variability in clinical outcome.

Methods

We produced draft genome sequences of all available tEPEC strains from GEMS lethal infections (LIs) and of closely matched EPEC strains from GEMS subjects with non-lethal symptomatic infections (NSIs) and asymptomatic infections (AIs) to identify gene clusters (potential protein encoding sequences sharing ≥90% nucleotide sequence identity) associated with lethality.

Results

Among 14,412 gene clusters identified, the presence or absence of 392 was associated with clinical outcome. As expected, more gene clusters were associated with LI versus AI than LI versus NSI. The gene clusters more prevalent in strains from LI than those from NSI and AI included those encoding proteins involved in O-antigen biogenesis, while clusters encoding type 3 secretion effectors EspJ and OspB were among those more prevalent in strains from non-lethal infections. One gene cluster encoding a variant of an NleG ubiquitin ligase was associated with LI versus AI, while two other nleG clusters had the opposite association. Similar associations were found for two nleG gene clusters in an additional, larger sample of NSI and AI GEMS strains.

Conclusions

Particular genes are associated with lethal tEPEC infections. Further study of these factors holds potential to unravel the mechanisms underlying severe disease and to prevent adverse outcomes.  相似文献   
2.
Plant and Soil - The nitrogen-fixing symbiosis fixation between legumes and Rhizobium helps the plant to survive and to compete effectively on nitrogen poor soils. The soil environment attached to...  相似文献   
3.
Modularity and integration are variational properties expressed at various levels of the biological hierarchy. Mismatches among these levels, for example developmental modules that are integrated in a functional unit, could be informative of how evolutionary processes and trade‐offs have shaped organismal morphologies as well as clade diversification. In the present study, we explored the full, integrated and modular spaces of two developmental modules in phacopid trilobites, the cephalon and the pygidium, and highlight some differences among them. Such contrasts reveal firstly that evolutionary processes operating in the modular spaces are stronger in the cephalon, probably due to a complex regime of selection related to the numerous functions ensured by this module. Secondly, we demonstrate that the same pattern of covariation is shared among species, which also differentiate along this common functional integration. This common pattern might be the result of stabilizing selection acting on the enrolment and implying a coordinate variation between the cephalon and the pygidium in a certain direction of the morphospace. Finally, we noticed that Austerops legrandi differs slightly from other species in that its integration is partly restructured in the way the two modules interact. Such a divergence can result from the involvement of the cephalon in several vital functions that may have constrained the response of the features involved in enrolment and reorganized the covariation of the pygidium with the cephalon. Therefore, it is possible that important evolutionary trade‐offs between enrolment and other functions on the cephalon might have partly shaped the diversification of trilobites.  相似文献   
4.
A previous analysis showed that Gammaproteobacteria could be the sole recoverable bacteria from surface-sterilized nodules of three wild species of Hedysarum. In this study we extended the analysis to eight Mediterranean native, uninoculated legumes never previously investigated regarding their root-nodule microsymbionts. The structural organization of the nodules was studied by light and electron microscopy, and their bacterial occupants were assessed by combined cultural and molecular approaches. On examination of 100 field-collected nodules, culturable isolates of rhizobia were hardly ever found, whereas over 24 other bacterial taxa were isolated from nodules. None of these nonrhizobial isolates could nodulate the original host when reinoculated in gnotobiotic culture. Despite the inability to culture rhizobial endosymbionts from within the nodules using standard culture media, a direct 16S rRNA gene PCR analysis revealed that most of these nodules contained rhizobia as the predominant population. The presence of nodular endophytes colocalized with rhizobia was verified by immunofluorescence microscopy of nodule sections using an Enterobacter-specific antibody. Hypotheses to explain the nonculturability of rhizobia are presented, and pertinent literature on legume endophytes is discussed.  相似文献   
5.
6.
DNA replication of phage-plasmid P4 in its host Escherichia coli depends on its replication protein α. In the plasmid state, P4 copy number is controlled by the regulator protein Cnr (copy number regulation). Mutations in α (αcr) that prevent regulation by Cnr cause P4 over-replication and cell death. Using the two-hybrid system in Saccharomyces cerevisiae and a system based on λ immunity in E.coli for in vivo detection of protein–protein interactions, we found that: (i) α protein interacts with Cnr, whereas αcr proteins do not; (ii) both α–α and αcr–αcr interactions occur and the interaction domain is located within the C-terminal of α; (iii) Cnr–Cnr interaction also occurs. Using an in vivo competition assay, we found that Cnr interferes with both α–α and αcr–αcr dimerization. Our data suggest that Cnr and α interact in at least two ways, which may have different functional roles in P4 replication control.  相似文献   
7.
8.
At some point in their history, most forests in the Mediterranean Basin have been subjected to intensive management or converted to agriculture land. Knowing how forest plant communities recovered after the abandonment of forest-management or agricultural practices (including livestock grazing) provides a basis for investigating how previous land management have affected plant species diversity and composition in forest ecosystems. Our study investigated the consequences of historical “land management” practices on present-day Mediterranean forests by comparing species assemblages and the diversity of (i) all plant species and (ii) each ecological group defined by species’ habitat preferences and successional status (i.e., early-, mid-, and late-successional species). We compared forest stands that differed both in land-use history and in successional stage. In addition, we evaluated the value of those stands for biodiversity conservation. The study revealed significant compositional differentiation among stands that was due to among-stand variations in the diversity (namely, species richness and evenness) of early-, intermediate-, and late-successional species. Historical land management has led to an increase in compositional divergences among forest stands and the loss of late-successional forest species.  相似文献   
9.
Ralstonia paucula strain RA4T, a gram negative, non-spore forming, motile bacterium having positive catalase and oxidase test, was isolated from surface soil. Twin arginine translocation protein type D (TatD) is shown to be located in cytoplasm and exhibits magnesium-dependent DNase. A tatD DNase gene was isolated and cloned from Ralstonia paucula RA4T genome. Nucleotide sequence analysis of the gene revealed 813 nucleotides encoding a protein of 270 amino acid residues. The tatD gene showed a high similarity to homolog gene from Ralstonia pickettii strain 12D. The deduced polypeptide sequence of TatD DNase from R. paucula RA4T had a typical catalytic site, HHPLDEHRHDP, and its calculated molecular mass and predicted isoelectric point were 29616 Da and 5.33, respectively. The deduced amino acid sequence showed a high degree of similarity to TatD DNase isoforms from Ralstonia genus and other sources. Predicted three-dimensional structure of TatD confirmed the presence of active site and theoretical function as DNase.  相似文献   
10.
Lipopolysaccharide (LPS) biosynthesis represents an underexploited target pathway for novel antimicrobial development to combat the emergence of multidrug‐resistant bacteria. A key player in LPS synthesis is the enzyme D ‐arabinose‐5‐phosphate isomerase (API), which catalyzes the reversible isomerization of D ‐ribulose‐5‐phosphate to D ‐arabinose‐5‐phosphate, a precursor of 3‐deoxy‐D ‐manno‐octulosonate that is an essential residue of the LPS inner core. API is composed of two main domains: an N‐terminal sugar isomerase domain (SIS) and a pair of cystathionine‐β‐synthase domains of unknown function. As the three‐dimensional structure of an enzyme is a prerequisite for the rational development of novel inhibitors, we present here the crystal structure of the SIS domain of a catalytic mutant (K59A) of E. coli D ‐arabinose‐5‐phosphate isomerase at 2.6‐Å resolution. Our structural analyses and comparisons made with other SIS domains highlight several potentially important active site residues. In particular, the crystal structure allowed us to identify a previously unpredicted His residue (H88) located at the mouth of the active site cavity as a possible catalytic residue. On the basis of such structural data, subsequently supported by biochemical and mutational experiments, we confirm the catalytic role of H88, which appears to be a generally conserved residue among two‐domain isomerases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号