首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   6篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
RFLP marker data from an F23 population derived from a cross between a sugary1 (su1) and a sugary enhancer1 (su1, sel) inbred were used to construct a genetic linkage map of maize. This map includes 93 segregating marker loci distributed throughout the maize genome, providing a saturated linkage map that is suitable for linkage analysis with quantitative trait loci (QTL). This population, which has been immortalized in the form of sibbed F23 families, was derived from each of the 214 F2 plants and along with probe data are available to the scientific community. QTL analysis for kernel sucrose (the primary form of sugar) concentration at 20 days after pollination (DAP) uncovered the segregation of seven major QTL influencing sucrose concentration; a locus linked to umc36a described the greatest proportion of the variation (24.7%). Since maltose concentration has previously been reported to be associated with the se1 phenotype, an analysis of probe associations with maltose concentration at 40 DAP was also conducted. The highly significant association of umc36a with maltose and sucrose concentrations provided evidence that this probe is linked to se1. Phenotypic evaluation for the se1 genotype in each F23 family enabled us to map the gene 12.1 cM distal to umc36a. In contrast to previous work where se1 was reported to be located on chromosome four, our data strongly suggest that the sugary enhancer1 locus maps on the the distal portion of the long arm of chromosome 2 in the maize genome.  相似文献   
2.
The mechanisms by which B lymphocytes inhibit anti-tumor immunity remain poorly understood. Murine EMT-6 mammary tumors grow readily in immune competent mice (BALB/c), but poorly in B-cell-deficient μ?/? BALB/c mice (BCDM). T regulatory cell (Treg) expansion and function were impaired in BCDM compared with BALB/c. In this study, we compared tumor growth, Treg cell proliferation, tumor lymphocyte infiltration and cytolytic T cell activity in BALB/c, BCDM and BCDM partially reconstituted with B cells by adoptive transfer (BCDM+B). Partial reconstitution of BCDM with adoptively transferred B cells restored EMT-6 tumor growth, which was independent of IL-10 secretion by B cells. Instead, high frequencies of intratumoral B cells were associated with increased recruitment and proliferation of Treg cells within the tumor microenvironment. The B-cell-dependent accumulation of Treg within the tumor microenvironment was associated with reduced tumor infiltration by CD49+ NK and CD8+ T cells and reduced cytotoxic T cell activity against EMT-6 targets. Our studies indicate that tumor-dependent immunosuppression of T-cell-mediated anti-tumor immunity is coordinated within the tumor microenvironment by B-cell-dependent cross talk with Treg cells, which does not require production of IL-10 by B cells.  相似文献   
3.
A genetic map of melon enriched for fruit traits was constructed, using a recombinant inbred (RI) population developed from a cross between representatives of the two subspecies of Cucumis melo L.: PI 414723 (subspecies agrestis) and ‘Dulce’ (subspecies melo). Phenotyping of 99 RI lines was conducted over three seasons in two locations in Israel and the US. The map includes 668 DNA markers (386 SSRs, 76 SNPs, six INDELs and 200 AFLPs), of which 160 were newly developed from fruit ESTs. These ESTs include candidate genes encoding for enzymes of sugar and carotenoid metabolic pathways that were cloned from melon cDNA or identified through mining of the International Cucurbit Genomics Initiative database (http://www.icugi.org/). The map covers 1,222 cM with an average of 2.672 cM between markers. In addition, a skeleton physical map was initiated and 29 melon BACs harboring fruit ESTs were localized to the 12 linkage groups of the map. Altogether, 44 fruit QTLs were identified: 25 confirming QTLs described using other populations and 19 newly described QTLs. The map includes QTLs for fruit sugar content, particularly sucrose, the major sugar affecting sweetness in melon fruit. Six QTLs interacting in an additive manner account for nearly all the difference in sugar content between the two genotypes. Three QTLs for fruit flesh color and carotenoid content were identified. Interestingly, no clear colocalization of QTLs for either sugar or carotenoid content was observed with over 40 genes encoding for enzymes involved in their metabolism. The RI population described here provides a useful resource for further genomics and metabolomics studies in melon, as well as useful markers for breeding for fruit quality.  相似文献   
4.
5.
The aromas of fruits, vegetables, and flowers are mixtures of volatile metabolites, often present in parts per billion levels or less. We show here that tomato (Lycopersicon esculentum Mill.) plants transgenic for a heterologous Clarkia breweri S-linalool synthase (LIS) gene, under the control of the tomato late-ripening-specific E8 promoter, synthesize and accumulate S-linalool and 8-hydroxylinalool in ripening fruits. Apart from the difference in volatiles, no other phenotypic alterations were noted, including the levels of other terpenoids such as gamma- and alpha-tocopherols, lycopene, beta-carotene, and lutein. Our studies indicate that it is possible to enhance the levels of monoterpenes in ripening fruits by metabolic engineering.  相似文献   
6.
Referee: Dr. T.J. Higgins, Chief Research Scientist, CSIRO, Divistion of Plant Industry, Clunies Ross Street, Box 1600, Canberra, 2601, Australia Recent advances in gene isolation, plant transformation, and genetic engineering are being used extensively to alter metabolic pathways in plants by tailormade modifications to single or multiple genes. Many of these modifications are directed toward increasing the nutritional value of plant-derived foods and feeds. These approaches are based on rapidly growing basic knowledge, understanding, and predictions of metabolic fluxes and networks. Some of the predictions appear to be accurate, while others are not, reflecting the fact that plant metabolism is more complex than we presently understand. Tailor-made modifications of plant metabolism has so far been directed into improving the levels of primary metabolites that are essential for growth and development of humans and their livestock. Yet, the list of improved metabolites is expected to grow tremendously after new discoveries in nutritional, medical, and health sciences. Despite our extensive knowledge of metabolic networks, many of the genes encoding enzymes, particularly those involved in secondary metabolism, are still unknown. These genes are being discovered at an accelerated rate by recent advances in genetic and genomics approaches. In the present review, we discuss examples in which the nutritional and health values of plant-derived foods and feeds were improved by metabolic engineering. These include modifications of the levels of several essential amino acids, lipids, fatty acids, minerals, nutraceuticals, antinutritional compounds, and aromas.  相似文献   
7.
The Accelerated Failure Time Model Under Biased Sampling   总被引:1,自引:0,他引:1  
Summary Chen (2009, Biometrics) studies the semi‐parametric accelerated failure time model for data that are size biased. Chen considers only the uncensored case and uses hazard‐based estimation methods originally developed for censored observations. However, for uncensored data, a simple linear regression on the log scale is more natural and provides better estimators.  相似文献   
8.
A heteropolysaccharide fraction was isolated from Phaseolus vulgaris beans in which it comprises at least 1% of the dry weight of the beans. This heteropolysaccharide increases larval mortality and decreases the rate of larval development and the number of eggs deposited by females of Callosobruchus chinensis, when incorporated in artificial beans in which the larvae feed. It is composed of galactose, glucose, xylose, arabinose and traces of rhamnose, as determined after acid hydrolysis. Of these individual sugars, arabinose and xylose affect adult fecundity as well. However, partial enzymic hydrolysis of the heteropolysaccharide fraction by C. chinensis larval midgut contents releases only glucose, galactose and trace amounts of arabinose, and the integral structure of heteropolysaccharide may be necessary for biological activity. the incorporation of the starch granules of Phaseolus vulgaris beans into artificial beans increases larval mortality and decreases the rate of larval development of C. chinensis. It is suggested that the heteropolysaccharide fraction as well as the starch are part of a complex of natural components of Phaseolus vulgaris beans that make these beans resistant to C. chinensis.
Résumé Ce travail cherche à préciser pourquoi les graines de haricot (Phaseolus vulgaris) ne sont pas attaquées par la Buche chinoise (Callosobruchus chinensis), espèce cependant très polyphage.Les graines de haricot renferment 1% d'un hétéropolysaccharide, qui s'est révélé accroître la mortalité et ralentir le développement des larves de cette Bruche, mais qui aussi réduit la fécondité des femelles adultes. Ces observations ont été faites à partir d'élevages sur des milieux artificiels normalement favorables, présentés sous forme de haricots, par un moulage approprié.Une hydrolyse acide de cet hétéropolysaccharide libère du galactose, du glucose, du xylose, de l'arabinose et des traces de rhamnose. Ces sucres simples sont testés: l'arabinose et le rhamnose influencent le développement des larves, tandis que le galactose, le xylose et à nouveau l'arabinose, ont un effet sur la fécondité des femelles (réduction de la fécondité à 40% de la normale avec 1% d'arabinose).Toutefois l'hydrolyse enzymatique de cette fraction hétéropolysaccharidique, par le contenu stomacal de larves de C. chinensis reste partielle et libère seulement du glucose, du galactose et des traces d'arabinose. II est possible que la structure intégrale de l'hétéropolysaccharide soit nécessaire à son activité biologique.Un autre facteur défavorable à C. chinensis pourrait être la nature même des grains d'amidon de Phaseolus. Cet amidon incorporé à l'aliment artificiel accroît en effet la mortalité larvaire et ralentit la vitesse de développement. Cet effet défavorable pourrait être dû à la non digestibilité des grains d'amidon entiers.Il est suggéré que la fraction hétéropolysaccharide et l'amidon de Phaseolus sont deux des facteurs présents dans la graine de haricot qui lui confèrent sa résistance naturelle à la Bruche chinoise.


Supported in part by the Research and Development Authority of the Hebrew University of Jerusalem.  相似文献   
9.
We propose a biophysical model of Escherichia coli that predicts growth rate and an effective cellular composition from an effective, coarse-grained representation of its genome. We assume that E. coli is in a state of balanced exponential steady-state growth, growing in a temporally and spatially constant environment, rich in resources. We apply this model to a series of past measurements, where the growth rate and rRNA-to-protein ratio have been measured for seven E. coli strains with an rRNA operon copy number ranging from one to seven (the wild-type copy number). These experiments show that growth rate markedly decreases for strains with fewer than six copies. Using the model, we were able to reproduce these measurements. We show that the model that best fits these data suggests that the volume fraction of macromolecules inside E. coli is not fixed when the rRNA operon copy number is varied. Moreover, the model predicts that increasing the copy number beyond seven results in a cytoplasm densely packed with ribosomes and proteins. Assuming that under such overcrowded conditions prolonged diffusion times tend to weaken binding affinities, the model predicts that growth rate will not increase substantially beyond the wild-type growth rate, as indicated by other experiments. Our model therefore suggests that changing the rRNA operon copy number of wild-type E. coli cells growing in a constant rich environment does not substantially increase their growth rate. Other observations regarding strains with an altered rRNA operon copy number, such as nucleoid compaction and the rRNA operon feedback response, appear to be qualitatively consistent with this model. In addition, we discuss possible design principles suggested by the model and propose further experiments to test its validity.  相似文献   
10.
The common flesh color of commercially grown watermelon is red due to the accumulation of lycopene. However, natural variation in carotenoid composition that exists among heirloom and exotic accessions results in a wide spectrum of flesh colors. We previously identified a unique orange flesh watermelon accession (NY0016) that accumulates mainly β-carotene and no lycopene. We hypothesized this unique accession could serve as a viable source for increasing provitamin A content in watermelon. Here we characterize the mode of inheritance and genetic architecture of this trait. Analysis of testcrosses of NY0016 with yellow and red fruited lines indicated a codominant mode of action as F1 fruits exhibited a combination of carotenoid profiles from both parents. We combined visual color phenotyping with genotyping-by-sequencing of an F2:3 population from a cross of NY0016 by a yellow fruited line, to map a major locus on chromosome 1, associated with β-carotene accumulation in watermelon fruit. The QTL interval is approximately 20 cM on the genetic map and 2.4 Mb on the watermelon genome. Trait-linked marker was developed and used for validation of the QTL effect in segregating populations across different genetic backgrounds. This study is a step toward identification of a major gene involved in carotenoid biosynthesis and accumulation in watermelon. The codominant inheritance of β-carotene provides opportunities to develop, through marker-assisted breeding, β-carotene-enriched red watermelon hybrids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号