首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2021年   1篇
  2017年   2篇
  2014年   2篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Wu  Xiao-Han  Fan  Ming-Zhi  Li  Xue-Feng  Piao  Xuan-Chun  Gao  Ri  Lian  Mei-Lan 《Journal of Plant Growth Regulation》2021,40(4):1440-1449
Journal of Plant Growth Regulation - The adventitious root (AR) culture of Panax ginseng C.A. Meyer is an alternative route for mass production of ginsenosides. During the AR culture of P. ginseng,...  相似文献   
2.
满天星试管苗与其玻璃化苗的RAPD指纹图谱分析   总被引:1,自引:1,他引:0  
采用分离群体分组分析法(BSA),用100个随机引物对满天星的正常苗和玻璃化苗进行RAPD分析的结果表明,7个随机引物扩增出多态性差异条带。再用上述7个引物分别对试管苗及其玻璃化苗个体进行DNA的PCR扩增的结果显示,引物J20在2种苗中出现差异条带。  相似文献   
3.
Efficiently culturing adventitious roots (ARs) has become an alternative route for the protection and utilization of endangered plant resources. In the present study, to improve accumulation of bioactive compounds (polysaccharides, phenolics, and flavonoids) in AR cultures of endangered plant species—Oplopanax elatus—effects of methyl jasmonate (MeJA) and salicylic acid (SA) were investigated. The optimal concentration of MeJA was 200 μM and SA was 100 μM for enhancement of polysaccharide, phenolic, and flavonoid contents. In addition, MeJA (200 μM) was more suitable than SA (100 μM) for polysaccharide and flavonoid production, but both elicitors were equally favorable for phenolic production. During AR bioreactor culture, MeJA was as an elicitor to study the effect of its addition time and contact time. Contents of polysaccharides, phenolics, and flavonoids increased when MeJA was added to culture medium after 40 days of culture, but the increased degree was lower and the AR biomass significantly inhibited. However, when MeJA was added to culture medium after 30 days of culture, polysaccharide, phenolic, and flavonoid contents dramatically increased without AR biomass decrease; the maximum productivity of three bioactive compounds was found on day 8 after the MeJA treatment. Therefore, a novel elicitation method during bioreactor culture of O. elatus ARs was established in the present study, the method could be applied to commercial production of O. elatus products in the future.  相似文献   
4.
Airlift bioreactors were programmed for continuous and temporary immersion culture to investigate factors that affect the rhizome proliferation, shoot formation, and plantlet regeneration of Cymbidium sinense. During rhizome proliferation, the continuous immersion bioreactor system was used to explore the effects of activated charcoal (AC) in the culture medium, inoculation density, and air volume on rhizome differentiation and growth. The optimum conditions for obtaining massive health rhizomes were 0.3 g l?1 AC in the culture medium, 7.5 g l?1 inoculation density, and 150 ml min?1 air. In addition, the temporary immersion bioreactor system was used for both shoot formation and plantlet regeneration. Supplementing 4 mg l?1 6-benzylaminopurine and 0.2 mg l?1 naphthalene acetic acid (NAA) to the culture medium promoted shoot induction from the rhizome. Cutting the rhizome explants into 1 cm segments was better for massive shoot formation than cutting into 0.25 and 0.5 cm explant segments. NAA promoted plantlet regeneration and the rooting rate (94.7 %), with whole plantlets growing well in culture medium containing 1.0 mg l?1 NAA. Therefore, applying bioreactors in C. sinense micropropagation is an efficient way for scaling up the production of propagules and whole plantlets for the industrial production of high-quality seedlings.  相似文献   
5.
Rhodiola sachalinensis is widely used in traditional Chinese medicine, and salidroside and polysaccharides are its important bioactive compounds. This study used airlift bioreactor systems to produce mass bioactive compounds through callus culture. Several factors affecting callus biomass and bioactive compound accumulation were investigated. Callus growth was vigorous in a bioreactor system, and the growth ratio was 2.8-fold higher in bioreactor culture than in agitated-flask culture. Callus biomass and polysaccharide content were favorable at 0.1 air volume per culture volume per min (vvm), whereas favorable salidroside content was observed at a high air volume (0.2 vvm). The maximum yields of salidroside (7.90 mg l?1) and polysaccharide (2.87 g l?1) were obtained at 0.1 vvm. Inoculum density greatly affected callus biomass and bioactive compound accumulation, and the highest biomass and contents or yields of salidroside and polysaccharide were determined at a high inoculum density of 12.5 g l?1. The level of hydrogen ion concentration (pH) at 5.8 improved callus biomass accumulation. Acidic medium (pH 4.8) stimulated salidroside synthesis but higher pH level (7.8) promoted polysaccharide accumulation. The highest yields of both bioactive compounds were obtained at pH 5.8. Methyl jasmonate (MeJA) participated in synthesis promotion of bioactive compounds, and the contents and yields of salidroside [4.75 mg g?1 dry weight (DW), 58.43 mg l?1] and polysaccharides (392.41 mg g?1 DW, 4.79 g l?1) were at maximum at 125 and 150 μmol of MeJA. Therefore, bioreactor systems can be used to produce R. sachalinensis bioactive compounds, and callus culture in a bioreactor can be as an alternative method for supplying materials for commercial drug production.  相似文献   
6.
Anoectochilus roxburghii (Wall) Lindl. (Orchidaceae) is a precious raw material for medicine. However, the wild resource of A. roxburghii has been endangered, and artificial cultivation results in low yields. To provide rhizomes of A. roxburghii as alternative plant materials, the present study used continuous immersion bioreactor systems to investigate several factors affecting rhizome biomass and bioactive compound accumulation. The bioreactor with a net at the bottom of the sphere in the bioreactor was suitable for production of rhizomes. The rhizome biomass and kinsenoside and polysaccharide accumulation peaked at 30 days of the bioreactor culture. Thus, 30 days was the appropriate culture period. Maximum rhizome biomass and kinsenoside and polysaccharide accumulation were determined when a bioreactor was inoculated with 12.5 g L??1 (fresh weight) of rhizomes, aerated at 500 mL min??1, and maintained under 45 µmol m??2 s??1 light intensity. This process resulted in the production of 2980.5 mg L??1 of kinsenoside and 5672.9 mg L?1 of polysaccharides.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号