首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   12篇
  国内免费   1篇
  2023年   4篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   6篇
  2014年   5篇
  2013年   5篇
  2012年   3篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   9篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
The impact of grazing, resource competition and light on prokaryotic growth and taxonomic composition in subtropical and tropical surface waters were studied through 10 microcosm experiments conducted between 30°N and 30°S in the Atlantic, Pacific and Indian oceans. Under natural sunlight conditions, significant changes in taxonomic composition were only observed after the reduction of grazing by sample filtration in combination with a decrease in resource competition by sample dilution. Sunlight exposure significantly reduced prokaryote growth (11 ± 6%) and community richness (14 ± 4%) compared to continuous darkness but did not significantly change community composition. The largest growth inhibition after sunlight exposure occurred at locations showing deep mixed layers. The reduction of grazing had an expected and significant positive effect on growth, but caused a significant decrease in community richness (16 ± 6%), suggesting that the coexistence of many different OTUs is partly promoted by the presence of predators. Dilution of the grazer-free prokaryotic community significantly enhanced growth at the level of community, but consistently and sharply reduced the abundance of Prochlorococcus and SAR11 populations. The decline of these oligotrophic bacterial taxa following an increase in resource availability is consistent with their high specialization for exploiting the limited resources available in the oligotrophic warm ocean.  相似文献   
2.
Lack of sensory feedback during laser surgery prevents surgeons from discerning the exact location of the incision, which increases duration and complexity of the treatment. In this study we demonstrate a new method for monitoring of laser ablation procedures. Real‐time tracking of the exact three dimensional (3D) lesion profile is accomplished by detection of shock waves emanating from the ablation spot and subsequent reconstruction of the incision location using time‐of‐flight data obtained from multiple acoustic detectors. Here, incisions of up to 9 mm in depth, created by pulsed laser ablation of fresh bovine tissue samples, were successfully monitored in real time. It was further observed that, by utilizing as little as 12 detection elements, the incision profile can be characterized with accuracy below 0.5 mm in all three dimensions and in good agreement with histological examinations. The proposed method holds therefore promise for delivering high precision real‐time feedback during laser surgeries. (© 2013 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
3.
4.
Activation of Rho/Rac GTPases during cell signaling requires the participation of GDP/GTP exchange factors of the Dbl family. Although the structure of the catalytic core of Dbl proteins has been established recently, the molecular changes that the full-length proteins experience during normal or oncogenic conditions of stimulation are still unknown. Here, we have used single-particle electron microscopy to solve the structures of the inactive (unphosphorylated), active (phosphorylated), and constitutively active (N-terminally deleted) versions of the exchange factor Vav3. Comparison of these forms has revealed the interdomain interactions maintaining the inactive Vav3 state and the dynamic changes that the overall Vav3 structure undergoes upon tyrosine phosphorylation. We have also found that the conformations of phosphorylated Vav3 and N-terminally deleted Vav3 are distinct, indicating that the acquisition of constitutive activity by exchange factors is structurally more complex than the mere elimination of inhibitory interactions between structural domains.  相似文献   
5.
RasGRPs constitute a new group of diacylglycerol-dependent GDP/GTP exchange factors that activate Ras subfamily GTPases. Despite a common structure, Ras-GRPs diverge in their GTPase specificity, subcellular distribution, and downstream biological effects. The more divergent family member is RasGRP2, a Rap1-specific exchange factor with low affinity toward diacylglycerol. The regulation of RasGRP2 during signal transduction has remained elusive up to now. In this report, we show that the subcellular localization of Ras-GRP2 is highly dependent on actin dynamics. Thus, the induction of F-actin by cytoskeletal regulators such as Vav, Vav2, Dbl, and Rac1 leads to the shift of RasGRP2 from the cytosol to membrane ruffles and its co-localization with F-actin. Treatment of cells with cytoskeletal disrupting drugs abolishes this effect, leading to an abnormal localization of RasGRP2 in cytoplasmic clusters of actin. The use of Rac1 effector mutants indicates that the RasGRP2 translocation is linked exclusively to actin polymerization and is independent of other pathways such as p21-activated kinase JNK, or superoxide production. Biochemical experiments demonstrate that the translocation of RasGRP2 to membrane ruffles is mediated by the direct association of this protein with F-actin, a property contained within its 150 first amino acids. Finally, we show that the RasGRP2/F-actin interaction promotes the regionalized activation of Rap1 in juxtamembrane areas of the cell. These results reveal a novel function of the actin cytoskeleton in mediating the spatial activation of Ras subfamily GTPases through the selective recruitment of GDP/GTP exchange factors.  相似文献   
6.
Although much is known about environmental factors that predispose individuals to hypertension and cardiovascular disease, little information is available regarding the genetic and signaling events involved. Indeed, few genes associated with the progression of these pathologies have been discovered despite intensive research in animal models and human populations. Here we identify Vav3, a GDP-GTP exchange factor that stimulates Rho and Rac GTPases, as an essential factor regulating the homeostasis of the cardiovascular system. Vav3-deficient mice exhibited tachycardia, systemic arterial hypertension and extensive cardiovascular remodeling. These mice also showed hyperactivity of sympathetic neurons from the time of birth. The high catecholamine levels associated with this condition led to the activation of the renin-angiotensin system, increased levels of kidney-related hormones and the progressive loss of cardiovascular and renal homeostasis. Pharmacological studies with drugs targeting sympathetic and renin-angiotensin responses confirmed the causative role and hierarchy of these events in the development of the Vav3-null mouse phenotype. These observations uncover the crucial role of Vav3 in the regulation of the sympathetic nervous system (SNS) and cardiovascular physiology, and reveal a signaling pathway that could be involved in the pathophysiology of human disease states involving tachycardia and sympathetic hyperactivity with unknown etiologies.  相似文献   
7.
To establish latent infections in B-cells, gammaherpesviruses express proteins in the infected B-cells of the host that spuriously activate signalling pathways located downstream of the B-cell receptor. One such protein is M2, a murine gammaherpesvirus 68-encoded molecule that activates the Vav1/Rac1 pathway via the formation of trimolecular complexes with Scr family members. Previous reports have shown that the formation of this heteromolecular complex involves interactions between a proline rich region of M2 and the Vav1 and Fyn SH3 domains. Here, we show that the optimal association of these proteins requires a second structural motif encompassing two tyrosine residues (Tyr120 and 129). These residues are inducibly phosphorylated by Fyn in non-hematopoietic cells and constitutively phosphorylated in B-cells. We also demonstrate that the phosphorylation of Tyr120 creates specific docking sites for the SH2 domains of both Vav1 and Fyn, a condition sine qua non for the optimal association of these two signalling proteins in vivo. Interestingly, signaling experiments indicate that the expression of M2 in B-cells promotes the tyrosine phosphorylation of Vav1 and additional signaling proteins, a biological process that requires the integrity of both the M2 phosphotyrosine and proline rich region motifs. By infecting mice with viruses mutated in the m2 locus, we show that the integrity of each of these two M2 docking motifs is essential for the early steps of murine gammaherpesvirus-68 latency. Taken together, these results indicate that the M2 phosphotyrosine motif and the previously described M2 proline rich region work in a concerted manner to manipulate the signaling machinery of the host B-cell.  相似文献   
8.
Vav proteins participate in the assembly of a multibranched signal transduction pathway in lymphocytes, including the stimulation of the phosphatidylinositol 3-kinase/protein kinase B and the phospholipase C-gamma/Ras GDP-releasing protein/Ras/Erk routes. In the present work, we used a genetic approach in chicken DT40 B-cell lines to investigate additional elements of the Vav route, the synergisms existing among the different Vav signaling branches, and the activities exerted by wild-type and oncogenic Vav proteins in B-lymphocytes. We show here that the Vav pathway is ramified in B-lymphocytes in additional diacylglycerol-dependent signaling branches such as those involving protein kinase C, protein kinase D, and phospholipase D. By using side-by-side comparisons of the activation levels of those signal transduction pathways in inhibitor-treated and knockout DT40 cells, we show that B-cells have different requirements regarding Vav proteins for the activation of antigen receptor downstream elements. Furthermore, we have detected interpathway cross-talk at the level of the most proximal elements but not among the most distal effector molecules of the Vav route. Finally, we show that the oncogenic versions of Vav1 and RhoA can activate alternative routes that could contribute to signal amplification and diversification events in transformed lymphocytes.  相似文献   
9.
Cobalamin (B12) is an essential cofactor that is exclusively synthesized by some prokaryotes while many prokaryotes and eukaryotes require an external supply of B12. The spatial and temporal availability of B12 is poorly understood in marine ecosystems. Field measurements of B12 along with a large set of ancillary biotic and abiotic factors were obtained during three oceanographic cruises in the NW Iberian Peninsula, covering different spatial and temporal scales. B12 concentrations were remarkably low (<1.5 pM) in all samples, being significantly higher at the subsurface Eastern North Atlantic Central Water than at shallower depths, suggesting that B12 supply in this water mass is greater than demand. Multiple regression models excluded B12 concentration as predictive variable for phytoplankton biomass or production, regardless of the presence of B12-requiring algae. Prokaryote production was the best predictor for primary production, and eukaryote community composition was better correlated with prokaryote community composition than with nutritional resources, suggesting that biotic interactions play a significant role in regulating microbial communities. Interestingly, co-occurrence network analyses based on 16S and 18S rRNA sequences allowed the identification of significant associations between potential B12 producers and consumers (e.g. Thaumarchaeota and Dynophyceae, or Amylibacter and Ostreococcus respectively), which can now be investigated using model systems in the laboratory.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号