首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   63篇
  2023年   4篇
  2022年   7篇
  2021年   13篇
  2020年   7篇
  2019年   14篇
  2018年   5篇
  2017年   13篇
  2016年   15篇
  2015年   25篇
  2014年   25篇
  2013年   19篇
  2012年   27篇
  2011年   16篇
  2010年   10篇
  2009年   11篇
  2008年   18篇
  2007年   21篇
  2006年   20篇
  2005年   13篇
  2004年   11篇
  2003年   13篇
  2002年   11篇
  2001年   8篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1975年   1篇
排序方式: 共有403条查询结果,搜索用时 31 毫秒
1.
Of all the genera of woody bamboos described from America, only three have pseudospikelets—Atractantha, Elytrostachys, and Guadua. The former two have pseudospikelets with an elongated rachilla internode that precedes the floret, making it pedicellate; they also share a type of leaf anatomy that separates them from the latter. The two new genera herein described, Criciuma and Eremocaulon, show most similarity to species of Guadua, both in spikelet morphology and in leaf anatomy. The study of these new taxa has helped to clarify the limits of New World genera with pseudospikelets and strengthened the case for maintaining Guadua as a genus distinct from its Old World counterpart, Bambusa. We are now able to discern a New World line of bamboos that includes Criciuma, Eremocaulon, and Guadua, separate from an Old World line that includes Bambusa, Dendrocalamus, and several other genera.  相似文献   
2.
At micromolar concentrations, ryanodine interacts with the dihydropyridine receptor of rabbit skeletal muscle transverse tubules. Ryanodine displaces specifically bound [3H]PN200-110 with an apparent inhibition constant of approx. 95 microM and inhibits dihydropyridine-sensitive calcium channels in the same preparation with an IC50 of approx. 45 microM. These concentrations of ryanodine are approximately three orders of magnitude higher than those required to saturate binding of the alkaloid to the ryanodine receptor of sarcoplasmic reticulum and to open the calcium release channel of sarcoplasmic reticulum (i.e. 20 nM (1988) J. Gen. Physiol. 92, 1-26). Thus at sufficiently high dose, ryanodine may affect SR as well as plasma membrane Ca permeabilities.  相似文献   
3.
Functional calcium channels present in purified skeletal muscle transverse tubules were inserted into planar phospholipid bilayers composed of the neutral lipid phosphatidylethanolamine (PE), the negatively charged lipid phosphatidylserine (PS), and mixtures of both. The lengthening of the mean open time and stabilization of single channel fluctuations under constant holding potentials was accomplished by the use of the agonist Bay K8644. It was found that the barium current carried through the channel saturates as a function of the BaCl2 concentration at a maximum current of 0.6 pA (at a holding potential of 0 mV) and a half-saturation value of 40 mM. Under saturation, the slope conductance of the channel is 20 pS at voltages more negative than -50 mV and 13 pS at a holding potential of 0 mV. At barium concentrations above and below the half-saturation point, the open channel currents were independent of the bilayer mole fraction of PS from XPS = 0 (pure PE) to XPS = 1.0 (pure PS). It is shown that in the absence of barium, the calcium channel transports sodium or potassium ions (P Na/PK = 1.4) at saturating rates higher than those for barium alone. The sodium conductance in pure PE bilayers saturates as a function of NaCl concentration, following a curve that can be described as a rectangular hyperbola with a half-saturation value of 200 mM and a maximum conductance of 68 pS (slope conductance at a holding potential of 0 mV). In pure PS bilayers, the sodium conductance is about twice that measured in PE at concentrations below 100 mM NaCl. The maximum channel conductance at high ionic strength is unaffected by the lipid charge. This effect at low ionic strength was analyzed according to J. Bell and C. Miller (1984. Biophysical Journal. 45:279-287) and interpreted as if the conduction pathway of the calcium channel were separated from the bilayer lipid by approximately 20 A. This distance thereby effectively insulates the ion entry to the channel from the bulk of the bilayer lipid surface charge. Current vs. voltage curves measured in NaCl in pure PE and pure PS show that similarly small surface charge effects are present in both inward and outward currents. This suggests that the same conduction insulation is present at both ends of the calcium channel.  相似文献   
4.
Monolayers of the negatively charged phospholipid phosphatidylserine (PS) and of the amphoteric phospholipid dioleoylphosphatidylethanolamine (DOPE) were used to assemble bilayers at the tip of patch-recording pipettes. PS bilayers, with seal resistances in the range of gigaohmns (gigaseals), could only be generated when millimolar concentration of divalent cations, Ca++, Mg++, or Ba++ were present in the pipette and bath solutions. In contrast, gigaseals of DOPE were independent of divalent ion concentration in the pH range where DOPE is predominantly neutral (pH 6.5) or positively charged (pH 1.5). At pH 10.0, when most DOPE molecules bear a net negative charge, gigaseals became divalent cation dependent, in a manner quantitatively similar to that of PS at neutral pH. The results indicate that divalent cations play an important role in stabilizing gigaseals of negatively charged lipid but are of no consequence in neutral or positively charged seals.  相似文献   
5.
gamma-Aminobutyric acidB (GABAB) receptor recognition sites that inhibit cyclic AMP formation, open potassium channels, and close calcium channels are coupled to these effector systems by guanine nucleotide binding proteins (G proteins). These G proteins are ADP-ribosylated by islet-activating protein (IAP), also known as pertussis toxin. This process prevents receptor coupling to these G proteins. In slices of cerebral cortex and hippocampus from rat, stimulation of GABAB receptors with baclofen, a receptor agonist, also potentiates the accumulation of cyclic AMP stimulated by beta-adrenergic agonists. It was unknown whether those GABAB receptors that potentiate the beta-adrenergic response were also sensitive to IAP. IAP was injected intracerebroventricularly into rats to ADP-ribosylate IAP-sensitive G proteins. Four days after the IAP injection, 38% and 52% of these G proteins from cerebral cortex and hippocampus, respectively, were ADP-ribosylated by the IAP injection. In slices of both structures prepared from IAP-treated rats, the GABAB receptor-mediated potentiation of the beta-adrenergic receptor response was attenuated. Thus, many GABAB receptor-mediated responses are coupled to IAP-sensitive G proteins.  相似文献   
6.
The effect of clinical concentrations of volatile anesthetics on ryanodine receptors of cardiac and skeletal muscle sarcoplasmic reticulum was evaluated using [3H]ryanodine binding. At 2 volume percent, halothane and enflurane stimulated binding to cardiac SR by 238% and 204%, respectively, while isoflurane had no effect. In contrast, halothane and enflurane had no effect on [3H]ryanodine binding to skeletal ryanodine receptors, while isoflurane produced a significant stimulation. These results suggest that volatile anesthetics interact in a site-specific manner with ryanodine receptors of cardiac or skeletal muscle to effect Ca2+ release-channel gating.  相似文献   
7.
There is increasing evidence that Ca2+ release from sarcoplasmic reticulum (SR) of mammalian skeletal muscle is regulated or modified by several factors including ionic composition of the myoplasm. We have studied the effect of Cl on the release of Ca2+ from the SR of rabbit skeletal muscle in both skinned psoas fibers and in isolated terminal cisternae vesicles. Ca2+ release from the SR in skinned fibers was inferred from increases in isometric tension and the amount of release was assessed by integrating the area under each tension transient. Ca2+ release from isolated SR was measured by rapid filtration of vesicles passively loaded with 45Ca2+. Ca2+ release from SR was stimulated in both preparations by exposure to a solution containing 191 mm choline-Cl, following pre-equilibration in Ca2+-loading solution that had propionate as the major anion. Controls using saponin (50 μg/ml), indicated that the release of Ca2+ was due to direct action of Cl on the SR rather than via depolarization of T-tubules. Procaine (10 mm) totally blocked Cl- and caffeine-elicited tension transients recorded using loading and release solutions having ([Na+] + [K+]) × [Cl] product of 6487.69 mm 2 and 12361.52 mm 2, respectively, and blocked 60% of Ca2+ release in isolated SR vesicles. Surprisingly, procaine had only a minor effect on tension transients elicited by Cl and caffeine together. The data from both preparations suggests that Cl induces a relatively small amount of Ca2+ release from the SR by activating receptors other than RYR-1. In addition, Cl may increase the Ca2+ sensitivity of RYR-1, which would then allow the small initial release of Ca2+ to facilitate further release of Ca2+ from the SR by Ca2+-induced Ca2+ release. Received: 6 February 1996/Revised: 17 July 1996  相似文献   
8.
The nature and evolution of positive emotion is a major question remaining unanswered in science and philosophy. The study of feelings and emotions in humans and animals is dominated by discussion of affective states that have negative valence. Given the clinical and social significance of negative affect, such as depression, it is unsurprising that these emotions have received more attention from scientists. Compared to negative emotions, such as fear that leads to fleeing or avoidance, positive emotions are less likely to result in specific, identifiable, behaviours being expressed by an animal. This makes it particularly challenging to quantify and study positive affect. However, bursts of intense positive emotion (joy) are more likely to be accompanied by externally visible markers, like vocalisations or movement patterns, which make it more amenable to scientific study and more resilient to concerns about anthropomorphism. We define joy as intense, brief, and event-driven (i.e. a response to something), which permits investigation into how animals react to a variety of situations that would provoke joy in humans. This means that behavioural correlates of joy are measurable, either through newly discovered ‘laughter’ vocalisations, increases in play behaviour, or reactions to cognitive bias tests that can be used across species. There are a range of potential situations that cause joy in humans that have not been studied in other animals, such as whether animals feel joy on sunny days, when they accomplish a difficult feat, or when they are reunited with a familiar companion after a prolonged absence. Observations of species-specific calls and play behaviour can be combined with biometric markers and reactions to ambiguous stimuli in order to enable comparisons of affect between phylogenetically distant taxonomic groups. Identifying positive affect is also important for animal welfare because knowledge of positive emotional states would allow us to monitor animal well-being better. Additionally, measuring if phylogenetically and ecologically distant animals play more, laugh more, or act more optimistically after certain kinds of experiences will also provide insight into the mechanisms underlying the evolution of joy and other positive emotions, and potentially even into the evolution of consciousness.  相似文献   
9.
Membracids (family: Membracidae), commonly known as treehoppers, are recognizable by their enlarged and often elaborated pronota. Much of the research investigating the development and evolution of this structure has focused on the fifth instar to adult transition, in which the pronotum undergoes the largest transformation as it takes on adult identity. However, little is known about the earlier nymphal stages, the degree to which the pronotum develops at these timepoints, and how development has changed relative to the ancestral state. Here, we studied the nymphal stages and adults of five morphologically distinct membracid species and of Aetalion reticulatum (family: Aetalionidae), the outgroup which was used as an ancestral state proxy. We found that shape differentiation in the pronotum of membracids can start as early as the second instar stage. Most shape differentiation occurs within the nymphal stages and not in the embryo since the shape of the first-instar pronotum did not differ from the outgroup species in all but one species we investigated. We found the anterior–posterior axis of the pronotum elongated at a faster relative rate in membracid species than in A. reticulatum, which contributed to the development of exaggerated pronotal size. Finally, we found differences in the morphogenesis of shape across species. We suggest this is due to the developmental and evolutionary divergence of differential growth patterning of the dorsal surface of the pronotum, not only across species, but also between stages within the same species. This lability may contribute to the evolvability and diversification of the membracid pronotum.  相似文献   
10.
The significance of polyoxometalates in the field of molecular magnetism is discussed. We show that this kind of inorganic complexes provides remarkable examples for the study of the exchange interactions in clusters. On the other hand, we examine the possibility of using these metal oxide anions as magnetic components of molecular materials containing organic tetrathiafulvalenes as electron donor molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号