首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   814篇
  免费   55篇
  国内免费   95篇
  2024年   3篇
  2023年   20篇
  2022年   32篇
  2021年   65篇
  2020年   47篇
  2019年   46篇
  2018年   34篇
  2017年   21篇
  2016年   47篇
  2015年   61篇
  2014年   68篇
  2013年   62篇
  2012年   82篇
  2011年   80篇
  2010年   37篇
  2009年   39篇
  2008年   37篇
  2007年   37篇
  2006年   26篇
  2005年   18篇
  2004年   16篇
  2003年   25篇
  2002年   12篇
  2001年   6篇
  2000年   3篇
  1999年   9篇
  1998年   2篇
  1997年   4篇
  1996年   10篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1981年   1篇
排序方式: 共有964条查询结果,搜索用时 15 毫秒
1.
In this article, we designed and synthesized two series of matrine analogs with ring-opening in the lactam portion of the molecule. Our in vitro cytotoxicity study showed that analog N-(3-bromophenyl)-4-[(1R,3aS,10aR,10bS)-decahydro-1H,4H-pyrido[3,2,1-ij][1,6]naphthyridin-1-yl]butanamide ( B11 ) with a meta-bromide on the phenyl ring displayed the best antiproliferative activity. Moreover, B11 induced cell cycle arrest in G1 phase and cell apoptosis in a dose-dependent manner in A549 cells. Molecular modeling revealed that B11 achieved a higher docking score compared to its precursor tert-butyl (1R,3aS,10aR,10bS)-1-[4-(3-bromoanilino)-4-oxobutyl]octahydro-1H,4H-pyrido[3,2,1-ij][1,6]naphthyridine-2(3H)-carboxylate ( A11 , an analog of B11 with a Boc group) and parent compound matrine, possibly because B11 formed a hydrogen bond with SER91 and a halogen bond with GLN320 on the binding site of annexin A2. Overall, we discovered the potential anticancer lead compound B11 , which can be used for further study both in vitro and in vivo.  相似文献   
2.
Journal of Plant Biochemistry and Biotechnology - The dried buds of Lonicera hypoglauca Miq. have antipyretic, antidotal and anti-inflammatory properties and as Flos lonicerae are widely used in...  相似文献   
3.
【目的】对分离自健康成人粪便样本的棒状腐败乳杆菌(Loigolactobacillus coryniformis)Lc7进行分类学鉴定和益生潜力评估。【方法】基于16SrRNA基因和基因组核心基因构建系统发育树,对Lc7进行分类学鉴定;通过耐酸和胆汁酸盐、粘附、抗氧化和抑菌实验,以及溶血、明胶酶活性和抗菌药物敏感性实验,评估Lc7的益生特性。同时,构建小鼠溃疡性结肠炎模型,评估Lc7的体内抗炎潜力。【结果】Lc7鉴定为L. coryniformis,在酸和胆汁酸盐的连续作用下,Lc7的存活率为70.17%。Lc7对HT-29细胞的粘附指数为56.33 CFU/cell,其自聚集和疏水性分别为80%和40%;Lc7对福氏志贺菌和鼠伤寒沙门菌等7个常见致病菌均有较强的抑制能力;对1,1-二苯基-2-苦基肼(1,1-diphenyl-2-picryl-hydrazyl,DPPH)和羟自由基(hydroxyl radicals,·OH)的清除率分别为91.70%和48.53%;Lc7无溶血现象和明胶酶活性,对选取的大多数抗生素均敏感。在小鼠结肠炎实验中,Lc7干预组小鼠结肠长度明显长于模型组(...  相似文献   
4.
通过发育解剖学研究表明,秦艽根的初生结构正常,初生木质部四原型。次生生长早期阶段也是正常的,但天以后的次生生长过程中,由于木质部内部分薄壁细胞的分裂,且迅速 化成异常形成层细胞,并与原维管形成层相连,从而形成多个新的形成层环,将木质部柱分为几个子木质部。  相似文献   
5.
从13个省(市)采取23个耕地表层土壤,通过室内模拟试验测定其磷素淋失临界值和pH、有机质、<0.01mm、<0.002mm、交换性钙镁、活性铁铝、磷等温吸附特性等,以建立土壤磷素淋失临界值与土壤基本理化性质和磷吸附特性之间的关系.结果表明:土壤pH<6.0时,随土壤pH提高临界值增加,土壤pH与临界值之间呈显著的指数关系;而当土壤pH>6.0时,随土壤pH提高临界值减小,在pH6.5左右土壤磷素淋失临界值最高.土壤磷素淋失临界值与土壤有机质、活性铁(铝)、交换性钙之间存在显著的相关,而与交换性镁、CEC、<0.01mm、<0.002mm、K、Qm的相关性受土壤酸碱度影响.可以通过测定土壤有机质或活性铁的含量,来计算土壤磷素淋失临界值,评价土壤磷素淋失的风险.供试的23个土壤,除了采自湖北潜江的20号水稻土存在比较大的磷素淋失风险,其余土壤发生磷素淋失的风险很小.  相似文献   
6.
Apurinic/apyrimidinic (AP or abasic) sites are among the most abundant DNA lesions. Numerous proteins within different organisms ranging from bacteria to human have been demonstrated to react with AP sites to form covalent Schiff base DNA–protein cross-links (DPCs). These DPCs are unstable due to their spontaneous hydrolysis, but the half-lives of these cross-links can be as long as several hours. Such long-lived DPCs are extremely toxic due to their large sizes, which physically block DNA replication. Therefore, these adducts must be promptly eradicated to maintain genome integrity. Herein, we used in vitro reconstitution experiments with chemically synthesized, stable, and site-specific Schiff base AP-peptide/protein cross-link analogs to demonstrate for the first time that this type of DPC can be repaired by Escherichia coli (E. coli) long-patch base excision repair. We demonstrated that the repair process requires a minimum of three enzymes and five consecutive steps, including: (1) 5′-DNA strand incision of the DPC by endonuclease IV; (2 to 4) strand-displacement DNA synthesis, removal of the 5′-deoxyribose phosphate-peptide/protein adduct-containing flap, and gap-filling DNA synthesis by DNA polymerase I; and (5) strand ligation by a ligase. We further demonstrated that endonuclease IV plays a major role in incising an AP-peptide cross-link within E. coli cell extracts. We also report that eradicating model AP-protein (11.2–36.1 kDa) DPCs is less efficient than that of an AP-peptide10mer cross-link, supporting the emerging model that proteolysis is likely required for efficient DPC repair.  相似文献   
7.
摘要:【目的】 利用平衡致死系统构建表达产类志贺氏毒素大肠杆菌(Shiga-like toxin Escherichia coli , SLTEC)保护性抗原的减毒猪霍乱沙门氏菌。【方法】 构建表达SLT-IIeB-FedF的重组质粒 ,再将其电转入终宿主菌减毒猪霍乱沙门氏菌ΔasdC500株中构建成口服活疫苗株 ,经聚丙烯酰胺凝胶电泳检测SLT-IIeB-FedF融合蛋白的表达情况,并观察重组菌体外培养的稳定性。【结果】  利用宿主-载体平衡致死系统构建了表达SLTEC保护性抗原的重组减毒猪霍乱沙门氏菌  相似文献   
8.
Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F‐box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F‐box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long‐day and short‐day photoperiods. Conversely, transgenic plants expressing the F‐box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2‐LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc‐3 loss‐of‐function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis.  相似文献   
9.
Plant phenology—the timing of cyclic or recurrent biological events in plants—offers insight into the ecology, evolution, and seasonality of plant‐mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season‐initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are “cryptic”—that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere models.  相似文献   
10.
Over the last century the Northern Hemisphere has experienced rapid climate warming, but this warming has not been evenly distributed seasonally, as well as diurnally. The implications of such seasonal and diurnal heterogeneous warming on regional and global vegetation photosynthetic activity, however, are still poorly understood. Here, we investigated for different seasons how photosynthetic activity of vegetation correlates with changes in seasonal daytime and night‐time temperature across the Northern Hemisphere (>30°N), using Normalized Difference Vegetation Index (NDVI) data from 1982 to 2011 obtained from the Advanced Very High Resolution Radiometer (AVHRR). Our analysis revealed some striking seasonal differences in the response of NDVI to changes in day‐ vs. night‐time temperatures. For instance, while higher daytime temperature (Tmax) is generally associated with higher NDVI values across the boreal zone, the area exhibiting a statistically significant positive correlation between Tmax and NDVI is much larger in spring (41% of area in boreal zone – total area 12.6 × 10km2) than in summer and autumn (14% and 9%, respectively). In contrast to the predominantly positive response of boreal ecosystems to changes in Tmax, increases in Tmax tended to negatively influence vegetation growth in temperate dry regions, particularly during summer. Changes in night‐time temperature (Tmin) correlated negatively with autumnal NDVI in most of the Northern Hemisphere, but had a positive effect on spring and summer NDVI in most temperate regions (e.g., Central North America and Central Asia). Such divergent covariance between the photosynthetic activity of Northern Hemispheric vegetation and day‐ and night‐time temperature changes among different seasons and climate zones suggests a changing dominance of ecophysiological processes across time and space. Understanding the seasonally different responses of vegetation photosynthetic activity to diurnal temperature changes, which have not been captured by current land surface models, is important for improving the performance of next generation regional and global coupled vegetation‐climate models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号