首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
  国内免费   2篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   3篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2007年   3篇
  2006年   1篇
  2004年   3篇
  2003年   1篇
  1999年   1篇
排序方式: 共有31条查询结果,搜索用时 46 毫秒
1.
2.
Interleukin-8 (IL-8) is a common inflammatory factor, which involves in various non-specific pathological processes of inflammation. It has been found that increased endothelial permeability accompanied with high expression of IL-8 at site of injured endothelium and atherosclerotic plaque at early stages, suggesting that IL-8 participated in regulating endothelial permeability in the developing processes of vascular disease. The purpose of this study is to investigate the regulation effects of IL-8 on the vascular endothelial permeability, and the mRNA and protein expression of tight junction components (i.e., ZO-1, Claudin-5 and Occludin). Endothelial cells were stimulated by IL-8 with the dose of 50, 100 and 200 ng/mL, and duration of 2, 4, 6, 8h, respectively. The mRNA and protein expression level of tight junction components with IL-8 under different concentration and duration was examined by RT-PCR and Western blot, respectively. Meanwhile, the integrins induced focal adhesions event with IL-8 stimulation was also investigated. The results showed that IL-8 regulated the permeability of endothelium by down-regulation of tight junction in a dose- and time-dependence manner, but was not by integrins induced focal adhesions. This finding reveals the molecular mechanism in the increase of endothelial cell permeability induced by IL-8, which is expected to provide a new idea as a therapeutic target in vascular diseases.  相似文献   
3.
Long-term balancing selection typically leaves narrow footprints of increased genetic diversity, and therefore most detection approaches only achieve optimal performances when sufficiently small genomic regions (i.e., windows) are examined. Such methods are sensitive to window sizes and suffer substantial losses in power when windows are large. Here, we employ mixture models to construct a set of five composite likelihood ratio test statistics, which we collectively term B statistics. These statistics are agnostic to window sizes and can operate on diverse forms of input data. Through simulations, we show that they exhibit comparable power to the best-performing current methods, and retain substantially high power regardless of window sizes. They also display considerable robustness to high mutation rates and uneven recombination landscapes, as well as an array of other common confounding scenarios. Moreover, we applied a specific version of the B statistics, termed B2, to a human population-genomic data set and recovered many top candidates from prior studies, including the then-uncharacterized STPG2 and CCDC169SOHLH2, both of which are related to gamete functions. We further applied B2 on a bonobo population-genomic data set. In addition to the MHC-DQ genes, we uncovered several novel candidate genes, such as KLRD1, involved in viral defense, and SCN9A, associated with pain perception. Finally, we show that our methods can be extended to account for multiallelic balancing selection and integrated the set of statistics into open-source software named BalLeRMix for future applications by the scientific community.  相似文献   
4.
5.
目的 探讨高原低氧对大鼠大脑皮质生长休止蛋白7(Gas7)表达的影响.方法 36只大鼠随机分为正常对照组和模拟高原低氧组,模拟高原低氧组大鼠进行6周缺氧,复制慢性高原低氧动物模型.实验结束后,所有动物采用免疫组织化学和免疫印迹技术检测大鼠大脑皮质中Gas7的表达.结果 与对照组相比,Gas7在模拟高原低氧组大鼠大脑皮质的表达明显增强.结论 Gas7可能参与了高原低氧对大鼠大脑皮质神经元结构和功能的影响.  相似文献   
6.
目的探讨慢性复合应激对大鼠学习和记忆功能及海马内神经元神经颗粒素(neurogranin,Ng)表达的影响。方法成年雄性Wistar大鼠随机分为对照组和复合应激组,复合应激组动物每天无规律交替暴露于复合应激原环境中,为期6周。应激结束后,用Morris水迷宫测试大鼠空间学习和记忆成绩,同时用免疫组织化学方法观察海马各亚区Ng表达的变化,并用RT-PCR技术分析各组大鼠海马Ng mRNA水平的变化。结果Morris水迷宫测试显示,应激组动物寻找隐蔽平台潜伏期明显短于对照组(P<0.05);应激组大鼠海马DG和CA3区Ng的蛋白表达水平明显高于对照组(P<0.05),而两组海马CA1区的Ng的免疫反应性无明显差别;与对照组相比,应激组动物的Ng mRNA水平亦明显上调(P<0.05)。结论慢性复合性应激大鼠的学习与记忆能力增强;Ng在海马中的表达和Ng mRNA转录水平增高,提示Ng参与了该增强机制。  相似文献   
7.
Chen H  Wu L  Liu X  Chen Y  Wang B 《Biorheology》2003,40(1-3):53-58
In order to demonstrate that IL-8 mRNA expression in endothelial cells is not only regulated by chemical factors, but also by mechanical factors, in this article, after pretreating cultured human umbilical vein endothelial cells (HUVECs) with shear stress for different time, we employed both RT-PCR to assay IL-8 mRNA expression and immunocytochemical staining to detect NF-kappaB activation in HUVECs. We found that: (i) IL-8 mRNA expressed little in HUVECs untreated or pretreated with low laminar shear stress for 0.5 hour; IL-8 mRNA expression was increased when HUVECs were pretreated with low laminar shear stress for 1 hour, and increased further when pretreated for 2 hours; (ii) the immunoreactivity of NF-kappaB p65 in the nuclei of HUVECs untreated or pretreated with low laminar shear stress for 0.5 hour was negative, while it became weak positive in the nuclei of HUVECs pretreated with shear stress for 1 hour and positive in the nuclei of HUVECs pretreated for 2 hours. The results imply that low laminar shear stress was capable of inducing IL-8 gene expression and activating NF-kappaB, which were both time-dependent. The induction of IL-8 gene expression by laminar shear stress is probably due to the activation of NF-kappaB. We suggest that IL-8 mRNA expression in endothelial cells induced by low shear stress may play a key role in the pathogenesis and development of both inflammation and arterioatherosclerosis.  相似文献   
8.
The adhesion of leukocytes to vascular surface is an important biomedical problem and has drawn extensive attention. In this study, we propose a compound drop model to simulate a leukocyte with a nucleus adhering to the surface of blood vessel under steady shear flow. A two-dimensional computational fluid dynamics (CFD) is conducted to determine the local distribution of pressure on the surface of the adherent model cell. By introducing the parameter of deformation index (DI), we investigate the deformation of the leukocyte and its nucleus under controlled conditions. Our numerical results show that: (i) the leukocyte is capable of deformation under external exposed flow field. The deformation index increases with initial contact angle and Reynolds number of external exposed flow. (ii) The nucleus deforms with the cell, and the deformation index of the leukocyte is greater than that of the nucleus. The leukocyte is more deformable while the nucleus is more capable of resisting external shear flow. (iii) The leukocyte and the nucleus are not able to deform infinitely with the increase of Reynolds number because the deformation index reaches a maximum. (iv) Pressure distribution confirms that there exists a region downstream of the cell, which produces high pressure to retard continuous deformation and provide a positive lift force on the cell. Meanwhile, we have measured the deformation of human leukocytes exposed to shear flow by using a flow chamber system. We found that the numerical results are well consistent with those of experiment. We conclude that the nucleus with high viscosity plays a particular role in leukocyte deformation.  相似文献   
9.

Background

11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) interconverts active 11β-hydroxyl glucocorticoids and inactive 11keto forms. However, its directionality is determined by availability of NADP+/NADPH. In liver cells, 11β-HSD1 behaves as a primary reductase, while in Leydig cells it acts as a primary oxidase. However, the exact mechanism is not clear. The direction of 11β-HSD1 has been proposed to be regulated by hexose-6-phosphate dehydrogenase (H6PDH), which catalyzes glucose-6-phosphate (G6P) to generate NADPH that drives 11β-HSD1 towards reduction.

Methodology

To examine the coupling between 11β-HSD1 and H6PDH, we added G6P to rat and human liver and testis or Leydig cell microsomes, and 11β-HSD1 activity was measured by radiometry.

Results and Conclusions

G6P stimulated 11β-HSD1 reductase activity in rat (3 fold) or human liver (1.5 fold), but not at all in testis. S3483, a G6P transporter inhibitor, reversed the G6P-mediated increases of 11β-HSD1 reductase activity. We compared the extent to which 11β-HSD1 in rat Leydig and liver cells might be coupled to H6PDH. In order to clarify the location of H6PDH within the testis, we used the Leydig cell toxicant ethane dimethanesulfonate (EDS) to selectively deplete Leydig cells. The depletion of Leydig cells eliminated Hsd11b1 (encoding 11β-HSD1) expression but did not affect the expression of H6pd (encoding H6PDH) and Slc37a4 (encoding G6P transporter). H6pd mRNA level and H6PDH activity were barely detectable in purified rat Leydig cells. In conclusion, the availability of H6PDH determines the different direction of 11β-HSD1 in liver and Leydig cells.  相似文献   
10.
Epidermal growth factor (EGF) has many physiological roles. However, its effects on stem and progenitor Leydig cell development remain unclear. Rat stem and progenitor Leydig cells were cultured with different concentrations of EGF alone or in combination with EGF antagonist, erlotinib or cetuximab. EGF (1 and 10 ng/mL) stimulated the proliferation of stem Leydig cells on the surface of seminiferous tubules and isolated CD90+ stem Leydig cells and progenitor Leydig cells but it blocked their differentiation. EGF also exerted anti‐apoptotic effects of progenitor Leydig cells. Erlotinib and cetuximab are able to reverse EGF‐mediated action. Gene microarray and qPCR of EGF‐treated progenitor Leydig cells revealed that the down‐regulation of steroidogenesis‐related proteins (Star and Hsd3b1) and antioxidative genes. It was found that EGF acted as a proliferative agent via increasing phosphorylation of AKT1. In conclusion, EGF stimulates the proliferation of rat stem and progenitor Leydig cells but blocks their differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号