首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2022年   1篇
  2021年   2篇
  2016年   1篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有10条查询结果,搜索用时 78 毫秒
1
1.
Journal of Applied Phycology - In this study, the dried biomass of Synechocystis sp. PCC 6803 was used as biosorbent for removing Fe(III)) ions from aqueous solution. The effects of exposure time,...  相似文献   
2.
Cyanobacteria have a tremendous activity to adapt to environmental changes of their growth conditions. In this study, Synechocystis sp. PCC 6803 was used as a model organism to focus on the alternatives of cyanobacterial energy metabolism. Glucose oxidation in Synechocystis sp. PCC6803 was studied by inactivation of slr1843, encoding glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the oxidative pentose phosphate pathway (OPPP). The resulting zwf strain was not capable of glucose supported heterotrophic growth. Growth under autotrophy and under mixotrophy was similar to that of the wild-type strain, even though oxygen evolution and uptake rates of the mutant were decreased in the presence of glucose. The organic acids citrate and succinate supported photoheterotrophic growth of both WT and zwf. Proteome analysis of soluble and membrane fractions allowed identification of four growth condition-dependent proteins, pentose-5-phosphate 3-epimerase (slr1622), inorganic pyrophosphatase (sll0807), hypothetical protein (slr2032) and ammonium/methylammonium permease (sll0108) revealing details of maintenance of the cellular carbon/nitrogen/phosphate balance under different modes of growth.  相似文献   
3.
The transport of putrescine into a moderately salt tolerant cyanobacterium Synechocystis sp. PCC 6803 was characterized by measuring the uptake of radioactively-labeled putrescine. Putrescine transport showed saturation kinetics with an apparent K(m) of 92 +/- 10 microM and V(max) of 0.33 +/- 0.05 nmol/min/mg protein. The transport of putrescine was pH-dependent with highest activity at pH 7.0. Strong inhibition of putrescine transport was caused by spermine and spermidine whereas only slight inhibition was observed by the addition of various amino acids. These results suggest that the transport system in Synechocystis sp. PCC 6803 is highly specific for polyamines. Putrescine transport is energy-dependent as evidenced by the inhibition by various metabolic inhibitors and ionophores. Slow growth was observed in cells grown under salt stress. Addition of low concentration of putrescine could restore growth almost to the level observed in the absence of salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased putrescine transport with an optimum 2-fold increase at 20 mosmol/kg. The stimulation of putrescine transport mediated by osmotic upshift was abolished in chloramphenicol-treated cells, suggesting possible involvement of an inducible transport system.  相似文献   
4.
5.
6.
Aphanothece cells could take up Na(+) and this uptake was strongly inhibited by the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Cells preloaded with Na(+) exhibited Na(+) extrusion ability upon energizing with glucose. Na(+) was also taken up by the plasma membranes supplied with ATP and the uptake was abolished by gramicidin D, monensin or Na(+)-ionophore. Orthovanadate and CCCP strongly inhibited Na(+) uptake, whereas N, N'-dicyclohexylcarbodiimide (DCCD) slightly inhibited the uptake. Plasma membranes could hydrolyse ATP in the presence of Na(+) but not with K(+), Ca(2+) and Li(+). The K(m) values for ATP and Na(+) were 1.66+/-0.12 and 25.0+/-1.8 mM, respectively, whereas the V(max) value was 0.66+/-0.05 mumol min(-1) mg(-1). Mg(2+) was required for ATPase activity whose optimal pH was 7.5. The ATPase was insensitive to N-ethylmaleimide, nitrate, thiocyanate, azide and ouabain, but was substantially inhibited by orthovanadate and DCCD. Amiloride, a Na(+)/H(+) antiporter inhibitor, and CCCP showed little or no effect. Gramicidin D and monensin stimulated ATPase activity. All these results suggest the existence of a P-type Na(+)-stimulated ATPase in Aphanothece halophytica. Plasma membranes from cells grown under salt stress condition showed higher ATPase activity than those from cells grown under nonstress condition.  相似文献   
7.

Poly-β-hydroxybutyrate (PHB) is a biodegradable and biocompatible polymer that has potential in the fields of environmental, agricultural, and biomedical sciences. Cyanobacteria are considered an excellent source of PHB by bioconversion of CO2. This study aimed to prolong PHB production under nitrogen-sufficient condition in the model cyanobacterium Synechocystis sp. PCC 6803. Interestingly, the lack of phosphate regulator (SphU) enabled the mutant strain (ΔSphU) to have the ability to accumulate phosphate with higher expression of Pho regulon. When strain ΔSphU was cultured in nitrogen complete medium for 14 days, the PHB granules were more extensively accumulated in the ΔSphU strain than in the wild type. Photosynthesis activity slightly increased in ΔSphU strain, with no significant difference in chlorophyll a content between wild-type and ΔSphU strain in nitrogen-containing medium, indicating that the higher PHB content (14.57% (w/w) cell dry weight) was not influent of chlorosis. The RT-qPCR analysis revealed that genes involved in PHB biosynthesis and acetyl phosphate pathway were more upregulated in ΔSphU strain. Moreover, the level of acetate production in ΔSphU cells was higher than that in the wild type, suggesting that the deletion of the phosphate regulator could directly induce PHB metabolism by activation of the acetyl phosphate pathway. This research provides better understanding of PHB production regulation in cyanobacteria which are a promising hosts for industrial production of biodegradable plastics.

  相似文献   
8.
9.

Background  

DnaJ proteins participate in many metabolic pathways through dynamic interactions with various components of these processes. The role of three small chloroplast-targeted DnaJ proteins, AtJ8 (At1 g80920), AtJ11 (At4 g36040) and AtJ20 (At4 g13830), was investigated here using knock-out mutants of Arabidopsis thaliana. Photochemical efficiency, capacity of CO2 assimilation, stabilization of Photosystem (PS) II dimers and supercomplexes under high light illumination, energy distribution between PSI and PSII and phosphorylation of PSII-LHCII proteins, global gene expression profiles and oxidative stress responses of these DnaJ mutants were analyzed.  相似文献   
10.
Journal of Applied Phycology - With increasing world energy consumption, renewable energy sources can fulfill the need and many have net zero carbon dioxide emissions. One of these is hydrogen,...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号