首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   9篇
  国内免费   2篇
  56篇
  2023年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   3篇
  2012年   6篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   3篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
A A Iglesias  Y Y Charng  S Ball    J Preiss 《Plant physiology》1994,104(4):1287-1294
ADP-glucose pyrophosphorylase (ADP-Glc PPase) from Chlamydomonas reinhardtii cells was purified over 2000-fold to a specific activity of 81 units/mg protein, and its kinetic and regulatory properties were characterized. Inorganic orthophosphate and 3-phosphoglycerate were the most potent inhibitor and activator, respectively. Rabbit antiserum raised against the spinach leaf ADP-Glc PPase (but not the one raised against the enzyme from Escherichia coli) inhibited the activity of the purified algal enzyme, which migrated as a single protein band in native polyacrylamide gel electrophoresis. Two-dimensional and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicate that the enzyme from C. reinhardtii is composed of two subunits with molecular masses of 50 and 53 kD, respectively. The molecular mass of the native enzyme is estimated to be 210 kD. Antisera raised against the spinach leaf holoenzyme and against the 51-kD spinach subunit cross-reacted with both subunits of the algal ADP-Glc PPase in immunoblot hybridization, but the cross-reaction was stronger for the 50-kD algal subunit than for the 53-kD subunit. No cross-reaction was observed when antiserum raised against the spinach leaf pyrophosphorylase 54-kD subunit was used. These results suggest that the ADP-Glc PPase from C. reinhardtii is a heterotetrameric protein, since the enzyme from higher plants and its two subunits are structurally more related to the small subunit of the spinach leaf enzyme than to its large subunit. This information is discussed in the context of the possible evolutionary changes leading from the bacterial ADP-Glc PPase to the cyanobacterial and higher plant enzymes.  相似文献   
2.
In an attempt to improve stress tolerance of tomato (Lycopersicon esculentum) plants, an expression vector containing an Arabidopsis C-repeat/dehydration responsive element binding factor 1 (CBF1) cDNA driven by a cauliflower mosaic virus 35S promoter was transferred into tomato plants. Transgenic expression of CBF1 was proved by northern- and western-blot analyses. The degree of chilling tolerance of transgenic T(1) and T(2) plants was found to be significantly greater than that of wild-type tomato plants as measured by survival rate, chlorophyll fluorescence value, and radical elongation. The transgenic tomato plants exhibited patterns of growth retardation; however, they resumed normal growth after GA(3) (gibberellic acid) treatment. More importantly, GA(3)-treated transgenic plants still exhibited a greater degree of chilling tolerance compared with wild-type plants. Subtractive hybridization was performed to isolate the responsive genes of heterologous Arabidopsis CBF1 in transgenic tomato plants. CATALASE1 (CAT1) was obtained and showed activation in transgenic tomato plants. The CAT1 gene and catalase activity were also highly induced in the transgenic tomato plants. The level of H(2)O(2) in the transgenic plants was lower than that in the wild-type plants under either normal or cold conditions. The transgenic plants also exhibited considerable tolerance against oxidative damage induced by methyl viologen. Results from the current study suggest that heterologous CBF1 expression in transgenic tomato plants may induce several oxidative-stress responsive genes to protect from chilling stress.  相似文献   
3.
Rhodopsins (Rhs) are light sensors, and Rh1 is the major Rh in the Drosophila photoreceptor rhabdomere membrane. Upon photoactivation, a fraction of Rh1 is internalized and degraded, but it remains unclear how the rhabdomeric Rh1 pool is replenished and what molecular players are involved. Here, we show that Crag, a DENN protein, is a guanine nucleotide exchange factor for Rab11 that is required for the homeostasis of Rh1 upon light exposure. The absence of Crag causes a light-induced accumulation of cytoplasmic Rh1, and loss of Crag or Rab11 leads to a similar photoreceptor degeneration in adult flies. Furthermore, the defects associated with loss of Crag can be partially rescued with a constitutive active form of Rab11. We propose that upon light stimulation, Crag is required for trafficking of Rh from the trans-Golgi network to rhabdomere membranes via a Rab11-dependent vesicular transport.  相似文献   
4.
Two Pseudomonas species (designated strains B1 and X1) were isolated from an aerobic pilot-scale fluidized bed reactor treating groundwater containing benzene, toluene, and p-xylene (BTX). Strain B1 grew with benzene and toluene as the sole sources of carbon and energy, and it cometabolized p-xylene in the presence of toluene. Strain X1 grew on toluene and p-xylene, but not benzene. In single substrate experiments, the appearance of biomass lagged the consumption of growth substrates, suggesting that substrate uptake may not be growth-rate limiting for these substrates. Batch tests using paired substrates (BT, TX, or BX) revealed competitive inhibition and cometabolic degradation patterns. Competitive inhibition was modeled by adding a competitive inhibition term to the Monod expression. Cometabolic transformation of nongrowth substrate (p-xylene) by strain B1 was quantified by coupling xylene transformation to consumption of growth substrate (toluene) during growth and to loss of biomass during the decay phase. Coupling was achieved by defining two transformation capacity terms for the cometabolizing culture: one that relates consumption of growth substrate to the consumption of nongrowth substrate, and second that relates consumption of biomass to the consumption of nongrowth substrate. Cometabolism increased decay rates, and the observed yield for strain B1 decreased in the presence of p-xylene. (c) 1993 Wiley & Sons, Inc.  相似文献   
5.
6.
Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.  相似文献   
7.
An inducible transposable element, termed INAc (inducible Activator), was constructed for development of a gene tagging system in higher plants. The advantage of such an inducible element is that, unlike the native transposon, its excision can be induced at any time during plant development and the resulting mutants are stable after removal of the inducer. A fusion of the SA inducible promoter (PR-1a) with the Ac transposase gene was inserted together with a hygromycin resistance gene between ca. 400 bp sequences from each end of the maize Ac element, yielding INAc. The INAc element was introduced into tobacco and tomato plants. A high frequency of spontaneous transposition was apparent in primary transformed tomato calli but not in tobacco calli. Treatment of tobacco plants with salicylic acid induced transposition of INAc in both somatic and germinal tissue, with germinal transposition events being revealed by characterization of the progeny of transformed plants whose flowers were exposed to SA. The INAc element thus exhibits potential for development of an inducible transposon system suitable for gene isolation in heterologous plant species.  相似文献   
8.
The molecular mechanisms underlying the involvement of oligodendrocytes in formation of the nodes of Ranvier (NORs) remain poorly understood. Here we show that oligodendrocyte-myelin glycoprotein (OMgp) aggregates specifically at NORs. Nodal location of OMgp does not occur along demyelinated axons of either Shiverer or proteolipid protein (PLP) transgenic mice. Over-expression of OMgp in OLN-93 cells facilitates process outgrowth. In transgenic mice in which expression of OMgp is down-regulated, myelin thickness declines, and lateral oligodendrocyte loops at the node-paranode junction are less compacted and even join together with the opposite loops, which leads to shortened nodal gaps. Notably, each of these structural abnormalities plus modest down-regulation of expression of Na(+) channel alpha subunit result in reduced conduction velocity in the spinal cords of the mutant mice. Thus, OMgp that is derived from glia has distinct roles in regulating nodal formation and function during CNS myelination.  相似文献   
9.

Purpose

3,19-(3-Chloro-4-fluorobenzylidene)andrographolide (SRJ23), a new semisynthetic derivative of andrographolide (AGP), exhibited selectivity against prostate cancer cells in the US National Cancer Institute (NCI) in vitro anti-cancer screen. Herein, we report the in vitro growth inhibition and mechanisms of cell cycle arrest and apoptosis induced by SRJ23.

Methods

3-(4,5-Dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used in assessing in vitro growth inhibition of compounds against prostate cancer (PC-3, DU-145 and LNCaP) and mouse macrophage (RAW 264.7) cell lines. Flow cytometry was utilised to analyse cell cycle distribution, whereas fluorescence microscopy was performed to determine morphological cell death. DNA fragmentation and annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) flow cytometry were done to confirm apoptosis induced by SRJ23. Quantitation of cell cycle and apoptotic regulatory proteins were determined by immunoblotting.

Results

AGP and SRJ23 selectively inhibited the growth of prostate cancer cells compared with RAW 264.7 cells at low micromolar concentrations; however, SRJ23 was more potent. Mechanistically, SRJ23-treated PC-3 cells displayed down-regulation of cyclin-dependent kinase (CDK) 1 without affecting levels of CDK4 and cyclin D1. However, SRJ23 induced down-regulation of CDK4 and cyclin D1 but without affecting CDK1 in DU145 and LNCaP cell lines. DNA histogram analysis revealed that the SRJ23 induced G2/M in PC-3 cells but G1 arrest in DU-145 and LNCaP cells. Morphologically, both compounds induced predominantly apoptosis, which was further confirmed by DNA fragmentation and annexin V-FITC staining. The DNA fragmentation was inhibited in the presence of caspase 8 inhibitor (Z-IETD-FMK). Apoptosis was associated with an increase in caspase 8 expression and activation. This thought to have induced cleavage of Bid into t-Bid. Additionally, increased expression and activation of caspase 9 and Bax proteins were apparent, with a concomitant down-regulation of Bcl-2 protein. Similar apoptosis cascade of events was observed in SRJ23-treated DU145 and LNCaP cell lines.

Conclusion

SRJ23 inhibited the growth of prostate cancer cells by inducing G2/M and G1 arrest via down-regulation of CDK1, and CDK4 and cyclin, respectively, and initiated caspase-8-mediated mitochondrial apoptosis. Taken together, these data support the potential of this compound as a new anti-prostate cancer agent.  相似文献   
10.
<正>2013年9月至2014年6月,笔者在西藏昌都市八宿县、贡觉县、芒康县和昌都县先后观察并拍摄到白鹭(Egretta garzetta),为西藏首次发现。2013年9月29日,在八宿县然乌镇政府后方的湖边(29°30′17.28″N,96°45′25.44″E,海拔3 934 m),观察到2只白鹭成鸟,其体形纤瘦,全身羽毛白色,头部无羽冠,肩、背和前胸的蓑状羽也消失,呈冬羽特征;虹膜为黄色;眼先黄绿;嘴黑色,但嘴裂处及下嘴基部显淡黄色;胫与跗跖部黑色,趾黄绿色。2014年5月至6月,  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号