首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   5篇
  63篇
  2022年   2篇
  2021年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   7篇
  2004年   3篇
  2003年   3篇
  2001年   1篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有63条查询结果,搜索用时 16 毫秒
1.
2.
Theory of protein folding   总被引:9,自引:0,他引:9  
Protein folding should be complex. Proteins organize themselves into specific three-dimensional structures, through a myriad of conformational changes. The classical view of protein folding describes this process as a nearly sequential series of discrete intermediates. In contrast, the energy landscape theory of folding considers folding as the progressive organization of an ensemble of partially folded structures through which the protein passes on its way to the natively folded structure. As a result of evolution, proteins have a rugged funnel-like landscape biased toward the native structure. Connecting theory and simulations of minimalist models with experiments has completely revolutionized our understanding of the underlying mechanisms that control protein folding.  相似文献   
3.
4.
5.

Introduction  

Development of cell therapies for repairing the intervertebral disc is limited by the lack of a source of healthy human disc cells. Stem cells, particularly mesenchymal stem cells, are seen as a potential source but differentiation strategies are limited by the lack of specific markers that can distinguish disc cells from articular chondrocytes.  相似文献   
6.
We present OpenAWSEM and Open3SPN2, new cross-compatible implementations of coarse-grained models for protein (AWSEM) and DNA (3SPN2) molecular dynamics simulations within the OpenMM framework. These new implementations retain the chemical accuracy and intrinsic efficiency of the original models while adding GPU acceleration and the ease of forcefield modification provided by OpenMM’s Custom Forces software framework. By utilizing GPUs, we achieve around a 30-fold speedup in protein and protein-DNA simulations over the existing LAMMPS-based implementations running on a single CPU core. We showcase the benefits of OpenMM’s Custom Forces framework by devising and implementing two new potentials that allow us to address important aspects of protein folding and structure prediction and by testing the ability of the combined OpenAWSEM and Open3SPN2 to model protein-DNA binding. The first potential is used to describe the changes in effective interactions that occur as a protein becomes partially buried in a membrane. We also introduced an interaction to describe proteins with multiple disulfide bonds. Using simple pairwise disulfide bonding terms results in unphysical clustering of cysteine residues, posing a problem when simulating the folding of proteins with many cysteines. We now can computationally reproduce Anfinsen’s early Nobel prize winning experiments by using OpenMM’s Custom Forces framework to introduce a multi-body disulfide bonding term that prevents unphysical clustering. Our protein-DNA simulations show that the binding landscape is funneled towards structures that are quite similar to those found using experiments. In summary, this paper provides a simulation tool for the molecular biophysics community that is both easy to use and sufficiently efficient to simulate large proteins and large protein-DNA systems that are central to many cellular processes. These codes should facilitate the interplay between molecular simulations and cellular studies, which have been hampered by the large mismatch between the time and length scales accessible to molecular simulations and those relevant to cell biology.  相似文献   
7.
The prevalence of domain-swapping in nature is a manifestation of the principle of minimal frustration in that the interactions designed by evolution to stabilize the protein are also involved in this mode of binding. We previously demonstrated that the Symmetrized-Go potential accurately predicts the experimentally observed domain-swapped structure of Eps8 based solely on the structure of the monomer. There can be, however, multiple modes of domain-swapping, reflecting a higher level of frustration, which is a consequence of symmetry. The human prion and cyanovirin-N are too frustrated to form unique domain-swapped structures on the basis of the Symmetrized-Go potential. However, supplementing the completely symmetric model with intermolecular and intramolecular disulfide bonds in the prion and cyanovirin-N proteins, respectively, yielded unique domain-swapped structures with a remarkable similarity to the experimentally observed ones. These results suggest that the disulfide bonds may sometimes be critical in overcoming the intrinsic frustration of the symmetrized energy landscapes for domain-swapping. We also discuss the implications of intermolecular disulfide bonds in the formation of mammalian prion aggregates.  相似文献   
8.
An important idea that emerges from the energy landscape theory of protein folding is that subtle global features of the protein landscape can profoundly affect the apparent mechanism of folding. The relationship between various characteristic temperatures in the phase diagrams and landmarks in the folding funnel at fixed temperatures can be used to classify different folding behaviors. The one-dimensional picture of a folding funnel classifies folding kinetics into four basic scenarios, depending on the relative location of the thermodynamic barrier and the glass transition as a function of a single-order parameter. However, the folding mechanism may not always be quantitatively described by a single-order parameter. Several other order parameters, such as degree of secondary structure formation, collapse and topological order, are needed to establish the connection between minimalist models and proteins in the laboratory. In this article we describe a simple multidimensional funnel based on two-order parameters that measure the degree of collapse and topological order. The appearance of several different “mechanisms” is illustrated by analyzing lattice models with different potentials and sequences with different degrees of design. In most cases, the two-dimensional analysis leads to a classification of mechanisms totally in keeping with the one-dimensional scheme, but a topologically distinct scenario of fast folding with traps also emerges. The nature of traps depends on the relative location of the glass transition surface and the thermodynamic barrier in the multidimensional funnel. Proteins 32:136–158, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
9.

Objective

Patients with temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) have diffuse subtle gray matter (GM) atrophy detectable by MRI quantification analyses. However, it is not clear whether the etiology and seizure frequency are associated with this atrophy. We aimed to evaluate the occurrence of GM atrophy and the influence of seizure frequency in patients with TLE and either normal MRI (TLE-NL) or MRI signs of HS (TLE-HS).

Methods

We evaluated a group of 172 consecutive patients with unilateral TLE-HS or TLE-NL as defined by hippocampal volumetry and signal quantification (122 TLE-HS and 50 TLE-NL) plus a group of 82 healthy individuals. Voxel-based morphometry was performed with VBM8/SPM8 in 3T MRIs. Patients with up to three complex partial seizures and no generalized tonic-clonic seizures in the previous year were considered to have infrequent seizures. Those who did not fulfill these criteria were considered to have frequent seizures.

Results

Patients with TLE-HS had more pronounced GM atrophy, including the ipsilateral mesial temporal structures, temporal lobe, bilateral thalami and pre/post-central gyri. Patients with TLE-NL had more subtle GM atrophy, including the ipsilateral orbitofrontal cortex, bilateral thalami and pre/post-central gyri. Both TLE-HS and TLE-NL showed increased GM volume in the contralateral pons. TLE-HS patients with frequent seizures had more pronounced GM atrophy in extra-temporal regions than TLE-HS with infrequent seizures. Patients with TLE-NL and infrequent seizures had no detectable GM atrophy. In both TLE-HS and TLE-NL, the duration of epilepsy correlated with GM atrophy in extra-hippocampal regions.

Conclusion

Although a diffuse network GM atrophy occurs in both TLE-HS and TLE-NL, this is strikingly more evident in TLE-HS and in patients with frequent seizures. These findings suggest that neocortical atrophy in TLE is related to the ongoing seizures and epilepsy duration, while thalamic atrophy is more probably related to the original epileptogenic process.  相似文献   
10.

Background  

Choriocarcinoma is an aggressive neoplasm arising in the body of the uterus. The disease normally spreads to lung and brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号