首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有16条查询结果,搜索用时 62 毫秒
1.
2.
Iron (Fe) deficiency is one of the major environmental stresses affecting plant production in the world. The selection of tolerant genotypes is considered an effective remediation strategy for this stress. The present study was carried out in order to investigate the biodiversity within Medicago truncatula plants in response to Fe deficiency, to identify tolerant genotypes and to assess the main tolerance mechanisms. To do this, a screening test was performed on 20 M. truncatula genotypes cultivated in minimal medium. Biometric and physiological markers were analyzed, including plant biomass, chlorophyll and root architecture. Results showed a biodiversity among the 20 genotypes. Interestingly, Fe deficiency tolerance was highest in TN8.20 and A17 genotypes. However, the lowest tolerance behavior was observed in TN1.11 and TN6.18. In order to investigate the main tolerance mechanisms, an experiment was conducted in the hydroponic system on already selected genotypes. Assessment of Fe deficiency tolerance was performed mainly on plant growth parameters, Fe (III)-chelate-reductase activity, rhizosphere acidification and antioxidant system defense. The relative better tolerance of A17 and TN8.20 to Fe deficiency was positively correlated with their capacity to maintain higher Fe-acquisition efficiency in roots via rhizosphere acidification and the stimulation of Fe (III)-chelate-reductase activity. Moreover, tolerant genotypes showed the lowest decreases in chlorophyll content and photosynthetic activity (CO2 assimilation) compared to the sensitive ones. The efficiency of antioxidant capacity of the tolerant genotypes was revealed in stimulation of catalase (CAT) and peroxidase (POX) activities as well as accumulation of polyphenols, leading to the maintenance of cell integrity under Fe deficiency.  相似文献   
3.
Iron chlorosis is very common on alkaline soils such as calcareous ones, since iron availability is limited by high pH. Under these conditions of iron deficiency, graminaceous plant species induce special mechanisms for iron acquisition, involving enhanced release of iron chelators called phytosiderophores. On the other hand, it is known that most of salt soils have alkaline pH. So, plants growing on this kind of soils are often subjected simultaneously to salinity and iron deficiency. This work aimed at (i) studying the physiological responses of barley (Hordeum vulgare L.) to iron deficiency, and (ii) evaluating the effect of salt on the iron nutrition and the phytosiderophore release. For this purpose, seedlings of Hordeum vulgare L. were cultivated under controlled conditions, either in a complete nutrient solution with or without NaCl, or in an iron free nutrient solution containing or not NaCl. The plant morphological aspect, chlorophyll content of young leaves, iron status, biomass production, and phytosiderophore release by roots were assessed. Plants subjected to Fe deficiency exhibited a severe chlorosis, accompanied by a significant biomass reduction. These plants developed more lateral roots than the control with a highly stimulated phytosiderophore release. However, the latter was greatly diminished when iron deficiency was associated to salinity. A depressive effect of salt on iron acquisition in plants subjected only to salt stress which was also observed and further confirmed by the important decrease of efficiency in iron acquisition. These results suggest that salinity may reduce capacity of plants to acquire iron from alkaline soils by inhibiting phytosiderophore release.  相似文献   
4.
In the present study, we were interested in the effect of salt stress on phenolic and carotenoid contents, antioxidant and antimicrobial activity of two varieties of Carthamus tinctorius (Jawhara and 104) flowers. For this purpose, C. tinctorius flowers from plants grown under four saline treatments (0, 5, 10 and 15 g/L NaCl) were collected at two development stages. As salinity increased up to 10 g/L, results showed that total phenols, flavonoids, condensed tannins and carotenoid contents increased with salinity. Such variability might be of great importance in terms of valorizing this plant as a source of naturally secondary metabolites. Furthermore, our results showed an enhancement of antioxidant activity which was evaluated by four different test systems (DPPH, β-carotene–linoleic acid, chelating and reducing power assays) with increasing stress severity. Obtained results showed that, for the two varieties, salt effect was more pronounced at post flowering stage than full flowering one. The sensitivity test of the methanolic extracts of the harvested flowers was applied against seven human pathogenic bacteria and three yeast strains. Salinity reduced significantly the antimicrobial activity of flower extracts.  相似文献   
5.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   
6.
7.
The cervical spine functions as a complex mechanism that responds to sudden loading in a unique manner, due to intricate structural features and kinematics. The spinal load-sharing under pure compression and sagittal flexion/extension at two different impact rates were compared using a bio-fidelic finite element (FE) model of the ligamentous cervical functional spinal unit (FSU) C2–C3. This model was developed using a comprehensive and realistic geometry of spinal components and material laws that include strain rate dependency, bone fracture, and ligament failure. The range of motion, contact pressure in facet joints, failure forces in ligaments were compared to experimental findings. The model demonstrated that resistance of spinal components to impact load is dependent on loading rate and direction. For the loads applied, stress increased with loading rate in all spinal components, and was concentrated in the outer intervertebral disc (IVD), regions of ligaments to bone attachment, and in the cancellous bone of the facet joints. The highest stress in ligaments was found in capsular ligament (CL) in all cases. Intradiscal pressure (IDP) in the nucleus was affected by loading rate change. It increased under compression/flexion but decreased under extension. Contact pressure in the facet joints showed less variation under compression, but increased significantly under flexion/extension particularly under extension. Cancellous bone of the facet joints region was the only component fractured and fracture occurred under extension at both rates. The cervical ligaments were the primary load-bearing component followed by the IVD, endplates and cancellous bone; however, the latter was the most vulnerable to extension as it fractured at low energy impact.  相似文献   
8.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   
9.
The main objective of this work was to compare the tolerance to lime-induced Fe deficiency of two lines of Medicago ciliaris (TN11.11 and TN8.7). We studied the effects of Fe deficiency on: (1) root biomass and rhizosphere acidification, (2) accumulation in the roots and the exudation into the rhizosphere of organic compounds (citric acid, malic acid and phenols), (3) changes under Fe deficient conditions in the activities of two enzymes, the first related to organic acid metabolism (malate dehydrogenase: MDH) and the other to proton extrusion (H+-ATPase activity). After a pre-treatment of one week, plants were transferred into hydroponic culture under three treatments: +Fe, ?Fe and +Fe +lime. Iron deficiency led to 40% increase in root biomass in TN11.11 line in the presence of lime. Both the omission of Fe and the addition of lime to the nutrient solution increased the H+-ATPase activity more in TN11.11 than in TN8.7. In addition, Fe deficiency increased accumulation of organic acids as well as phenols in roots, and stimulated the MDH activity more in TN11.11 than in TN8.7 (+75% and +41% in TN11.11 and TN8.7, respectively). Iron deficiency also increased the amounts of citrate, malate and phenols in root exudates. Our data allowed us to note that the TN11.11 line is more effective in overcoming Fe deficiency than TN8.7.  相似文献   
10.
Little is known about the biochemical basis of the action of free fatty acids (FFA) on breast cancer cell proliferation and apoptosis. Here we report that unsaturated FFAs stimulated the proliferation of human MDA-MB-231 breast cancer cells, whereas saturated FFAs inhibited it and caused apoptosis. Saturated FFA palmitate decreased the mitochondrial membrane potential and caused cytochrome c release. Palmitate-induced apoptosis was enhanced by the fat oxidation inhibitor etomoxir, whereas it was reduced by fatty-acyl CoA synthase inhibitor triacsin C. The non-metabolizable analog 2-bromopalmitate was not cytotoxic. This indicates that palmitate must be metabolized to exert its toxic effect but that its action does not involve fat oxidation. Pharmacological studies showed that the action of palmitate is not mediated via ceramides, reactive oxygen species, or changes in phosphatidylinositol 3-kinase activity. Palmitate caused early enhancement of cardiolipin turnover and decreased the levels of this mitochondrial phospholipid, which is necessary for cytochrome c retention. Cosupplementation of oleate, or increasing beta-oxidation with the AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside, both restored cardiolipin levels and blocked palmitate-induced apoptosis. Oleate was preferentially metabolized to triglycerides, and oleate cosupplementation channeled palmitate esterification processes to triglycerides. Overexpression of Bcl-2 family members blocked palmitate-induced apoptosis. The results provide evidence that a decrease in cardiolipin levels and altered mitochondrial function are involved in palmitate-induced breast cancer cell death. They also suggest that the antiapoptotic action of oleate on palmitate-induced cell death involves both restoration of cardiolipin levels and redirection of palmitate esterification processes to triglycerides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号