首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   3篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2017年   1篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Neutrophil extracellular traps (NETs) are extracellular chromatin structures that can trap and degrade microbes. They arise from neutrophils that have activated a cell death program called NET cell death, or NETosis. Activation of NETosis has been shown to involve NADPH oxidase activity, disintegration of the nuclear envelope and most granule membranes, decondensation of nuclear chromatin and formation of NETs. We report that in phorbol myristate acetate (PMA)-stimulated neutrophils, intracellular chromatin decondensation and NET formation follow autophagy and superoxide production, both of which are required to mediate PMA-induced NETosis and occur independently of each other. Neutrophils from patients with chronic granulomatous disease, which lack NADPH oxidase activity, still exhibit PMA-induced autophagy. Conversely, PMA-induced NADPH oxidase activity is not affected by pharmacological inhibition of autophagy. Interestingly, inhibition of either autophagy or NADPH oxidase prevents intracellular chromatin decondensation, which is essential for NETosis and NET formation, and results in cell death characterized by hallmarks of apoptosis. These results indicate that apoptosis might function as a backup program for NETosis when autophagy or NADPH oxidase activity is prevented.  相似文献   
2.
BackgroundOne of the main challenges in personalized medicine is to establish and apply a large number of variants from genomic databases into clinical diagnostics and further facilitate genome-driven drug repurposing. By utilizing biological chronic hepatitis B infection (CHB) risk genes, our study proposed a systematic approach to use genomic variants to drive drug repurposing for CHB.MethodThe genomic variants were retrieved from the Genome-Wide Association Study (GWAS) and Phenome-Wide Association Study (PheWAS) databases. Then, the biological CHB risk genes crucial for CHB progression were prioritized based on the scoring system devised with five strict functional annotation criteria. A score of ≥ 2 were categorized as the biological CHB risk genes and further shed light on drug target genes for CHB treatments. Overlapping druggable targets were identified using two drug databases (DrugBank and Drug-Gene Interaction Database (DGIdb)).ResultsA total of 44 biological CHB risk genes were screened based on the scoring system from five functional annotation criteria. Interestingly, we found 6 druggable targets that overlapped with 18 drugs with status of undergoing clinical trials for CHB, and 9 druggable targets that overlapped with 20 drugs undergoing preclinical investigations for CHB. Eight druggable targets were identified, overlapping with 25 drugs that can potentially be repurposed for CHB. Notably, CD40 and HLA-DPB1 were identified as promising targets for CHB drug repurposing based on the target scores.ConclusionThrough the integration of genomic variants and a bioinformatic approach, our findings suggested the plausibility of CHB genomic variant-driven drug repurposing for CHB.  相似文献   
3.
4.
Streptococcus uberis is one of the principal causative agents of bovine mastitis. In this study, we report that S. uberis strain 42 produces a lantibiotic, nisin U, which is 78% identical (82% similar) to nisin A from Lactococcus lactis. The 15.6-kb nisin U locus comprises 11 open reading frames, similar in putative functionality but differing in arrangement from that of the nisin A biosynthetic cluster. The nisin U producer strain exhibits specific resistance (immunity) to nisin U and cross-resistance to nisin A, a finding consistent with the 55% sequence similarity of their respective immunity peptides. Homologues of the nisin U structural gene were identified in several additional S. uberis strains, and in each case cross-protective immunity was expressed to nisin A and to the other producers of nisin U and its variants. To our knowledge, this is the first report both of characterization of a bacteriocin by S. uberis, as well as of a member of the nisin family of peptides in a species other than L. lactis.  相似文献   
5.
Iron status and oxidative stress in beta-thalassemia patients in Jakarta   总被引:1,自引:0,他引:1  
A study on thalassemia intermedia and major patients in Jakarta was initiated to obtain a comprehensive picture of metabolic dysregulation, iron overload, oxidative stress, and cell damage. Data are presented from a group of 14 transfusion-dependent patients in an age range of 11-25 years (T) and another group of 9 frequently transfused (for at least 15 years) patients aged 17-30 years (L). A third group comprised 6 patients (aged 7 to 14 years) who had not yet obtained transfusions (N). The 21 controls (C) were voluntary students without diagnosis or clinical signs of thalassemia up to 30 years of age. The study was approved by the Ethical Clearance Board of the Medical Faculty and all blood samples from controls and patients were obtained on fully informed consent. Levels of antioxidants (vitamins A, C, E and beta-carotene) and reactive thiols are considerably decreased in transfused patients, whereas signs of iron overload and cell damage are increased (serum iron, ferritin, transferrin saturation, SGOT, SGPT, gamma-GT, bilirubin). Results can be summarized that non-transfused thalassemia intermedia patients exert slight signs of oxidative stress, and increased hemoglobin degradation but no significant indication of tissue or cell damage. This picture differs considerably from transfusion-dependent thalassemia major patients: highly significant decrease in antioxidants and thiols and tremendous iron overload and cell damage. The picture is even worsened in long-term transfused patients. Iron chelation after transfusion is not sufficient in Indonesia, because it is normally (with few exceptions) applied only once together with transfusion. Hence, one major reason of the bad condition of transfusion-dependent thalassemia patients in Indonesia appears to be frequent transfusions (on the average one per month) and insufficient chelation of one treatment per month together with transfusion.  相似文献   
6.
Autophagy and apoptosis are two important and interconnected stress-response mechanisms. However, the molecular interplay between these two pathways is not fully understood. To study the fate and function of autophagic proteins at the onset of apoptosis, we used a cellular model system in which autophagy precedes apoptosis. IL-3 depletion of Ba/F3 cells caused caspase (casp)-mediated cleavage of Beclin-1 and PI3KC3, two crucial components of the autophagy-inducing complex. We identified two casp cleavage sites in Beclin-1, TDVD133 and DQLD149, cleavage at which yields fragments lacking the autophagy-inducing capacity. Noteworthy, the C-terminal fragment, Beclin-1-C, localized predominantly at the mitochondria and sensitized the cells to apoptosis. Moreover, on isolated mitochondria, recombinant Beclin-1-C was able to induce the release of proapoptotic factors. These findings point to a mechanism by which casp-dependent generation of Beclin-1-C creates an amplifying loop enhancing apoptosis upon growth factor withdrawal.  相似文献   
7.
Transportation amongst cities is found as one of the main factors which affect the outbreak of diseases. To understand the effect of transport-related infection on disease spread, an SEIRS (Susceptible, Exposed, Infectious, Recovered) epidemic model for two cities is formulated and analyzed. The epidemiological threshold, known as the basic reproduction number, of the model is derived. If the basic reproduction number is below unity, the disease-free equilibrium is locally asymptotically stable. Thus, the disease can be eradicated from the community. There exists an endemic equilibrium which is locally asymptotically stable if the reproduction number is larger than unity. This means that the disease will persist within the community. The results show that transportation among regions will change the disease dynamics and break infection out even if infectious diseases will go to extinction in each isolated region without transport-related infection. In addition, the result shows that transport-related infection intensifies the disease spread if infectious diseases break out to cause an endemic situation in each region, in the sense of that both the absolute and relative size of patients increase. Further, the formulated model is applied to the real data of SARS outbreak in 2003 to study the transmission of disease during the movement between two regions. The results show that the transport-related infection is effected to the number of infected individuals and the duration of outbreak in such the way that the disease becomes more endemic due to the movement between two cities. This study can be helpful in providing the information to public health authorities and policy maker to reduce spreading disease when its occurs.  相似文献   
8.
Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor characterized by rapid progression. The mechanisms that lead to a shift from initial therapeutic sensitivity to ultimate therapeutic resistance are poorly understood. Although the SCLC genomic landscape led to the discovery of promising agents targeting genetic alterations that were already under investigation, results have been disappointing. Achievements in targeted therapeutics have not been observed for over 30 years. Therefore, the underlying disease biology and novel targets urgently require a better understanding. Epigenetic regulation is deeply involved in the cellular plasticity that could shift tumor cells to the malignant phenotype. We have focused on a histone modifier, LSD1, that is overexpressed in SCLC and is a potent therapeutic target. Interestingly, the LSD1 splice variant LSD1+8a, the expression of which has been reported to be restricted to neural tissue, was detected and was involved in the expression of neuroendocrine marker genes in SCLC cell lines. Cells with high expression of LSD1+8a were resistant to CDDP and LSD1 inhibitor. Moreover, suppression of LSD1+8a inhibited cell proliferation, indicating that LSD1+8a could play a critical role in SCLC. These findings suggest that LSD1+8a should be considered a novel therapeutic target in SCLC.  相似文献   
9.
Cell death is a crucial process during development, homeostasis and immune regulation of multicellular organisms, and its dysregulation is associated with numerous pathologies. Cell death is often induced upon pathogen infection as part of the defense mechanism, and pathogens have evolved strategies to modulate host cell death. In this review, we will discuss the molecular mechanisms and physiological relevance of four major types of programmed cell death, namely apoptosis, necrosis, autophagic cell death and pyroptosis.  相似文献   
10.
Salivaricin A (SalA), the first Streptococcus salivarius lantibiotic to be characterized, appears to be inhibitory to most Streptococcus pyogenes strains. A variant of the SalA structural gene (salA1) is present in more than 90% of S. pyogenes strains, but only strains of M serotype 4 and T pattern 4 produce the biologically active peptide. The present study identifies four additional variants (salA2 to salA5) of the SalA structural gene and demonstrates that each of the corresponding inhibitory peptides (SalA2 to SalA5) is produced in vitro. These variants appear to be similar to SalA and SalA1 in their inhibitory activity against Micrococcus luteus and in their ability to act as inducers of SalA production. It had previously been shown that S. pyogenes strain SF370 had a deletion (of approximately 2.5 kb) in the salM and salT genes of the salA1 locus. In the present study, several additional characteristic deletions within the salA1 loci were identified. S. pyogenes strains of the same M serotype all share the same salA1 locus structure. Since S. salivarius is a predominant member of the normal oral flora of healthy humans, strains producing anti-S. pyogenes lantibiotics, such as SalA, may have excellent potential for use as oral probiotics. In the present study, we have used a highly specific SalA induction system to directly detect the presence of SalA in the saliva of humans who either naturally harbor populations of SalA-producing S. salivarius or who have been colonized with the SalA2-producing probiotic S. salivarius K12.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号