首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   22篇
  2015年   1篇
  2014年   3篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   5篇
  2002年   6篇
  2001年   6篇
  2000年   11篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1984年   3篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
1.
A key event in ribosomal protein synthesis is the translocation of deacylated tRNA, peptidyl tRNA and mRNA, which is catalyzed by elongation factor G (EF-G) and requires GTP. To address the molecular mechanism of the reaction we have studied the functional role of a tRNA exit site (E site) for tRNA release during translocation. We show that modifications of the 3' end of tRNAPhe, which considerably decrease the affinity of E-site binding, lower the translocation rate up to 40-fold. Furthermore, 3'-end modifications lower or abolish the stimulation by P site-bound tRNA of the GTPase activity of EF-G on the ribosome. The results suggest that a hydrogen-bonding interaction of the 3'-terminal adenine of the leaving tRNA in the E site, most likely base-pairing with 23S rRNA, is essential for the translocation reaction. Furthermore, this interaction stimulates the GTP hydrolyzing activity of EF-G on the ribosome. We propose the following molecular model of translocation: after the binding of EF-G.GTP, the P site-bound tRNA, by a movement of the 3'-terminal single-stranded ACCA tail, establishes an interaction with 23S rRNA in the adjacent E site, thereby initiating the tRNA transfer from the P site to the E site and promoting GTP hydrolysis. The co-operative interaction between the E site and the EF-G binding site, which are distantly located on the 50S ribosomal subunit, is probably mediated by a conformational change of 23S rRNA.  相似文献   
2.
H Paulsen  W Wintermeyer 《Biochemistry》1986,25(10):2749-2756
The distances between the anticodon loops of fluorescent tRNAPhe bound to the E site and to either the A or the P site of poly(U)-programmed Escherichia coli ribosomes were measured by fluorescence energy transfer. Donor and acceptor molecules were wybutine and proflavin, respectively, both located 3' to the anticodon of tRNAPhe. The anticodon loops were found to be separated by 42 +/- 10 A (A to E site) and 34 +/- 8 A (P to E site). The latter distance is much larger than the one measured between the anticodon loops of A and P site bound tRNAs [24 +/- 4 A; Paulsen, H., Robertson, J. M., & Wintermeyer, W. (1983) J. Mol. Biol. 167, 411-426], rendering unlikely simultaneous codon-anticodon interaction in the P and E sites. In kinetic stopped-flow measurements, the energy transfer between the anticodon loops of the tRNA molecules was followed during translocation. The transfer efficiency decreases in three steps with apparent rate constants on the order of 1, 0.1, and 0.01 s-1. The fast step is ascribed to the simultaneous displacement of the deacylated tRNAPhe out of the P site and of the N-AcPhe-tRNAPhe from the A site to the P site. The distance between the anticodon loops does not change appreciably during this reaction. A significant separation of the two tRNAs occurs during the intermediate and the slow steps. The latter most likely represents a rearrangement of the posttranslocation complex containing both tRNA molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
tRNA binding sites of ribosomes from Escherichia coli   总被引:6,自引:0,他引:6  
70S tight-couple ribosomes from Escherichia coli were studied with respect to activity and number of tRNA binding sites. The nitrocellulose filtration and puromycin assays were used both in a direct manner and in the form of a competition binding assay, the latter allowing an unambiguous determination of the fraction of ribosomes being active in tRNA binding. It was found that, in the presence of poly(U), the active ribosomes bound two molecules of N-AcPhe-tRNAPhe, one in the P and the other in the A site, at Mg2+ concentrations between 6 and 20 mM. A third binding site in addition to P and A sites was observed for deacylated tRNAPhe. At Mg2+ concentrations of 10 mM and below, the occupancy of the additional site was very low. Dissociation of tRNA from this site was found to be rather fast, as compared to both P and A sites. These results suggest that the additional site during translocation functions as an exit site, to which deacylated tRNA is transiently bound before leaving the ribosome. Since tRNA binding to this site did not require the presence of poly(U), a function of exit site bound tRNA in the fixation of the mRNA appears unlikely. Both the affinity and stability of binding to the additional site were found lower for the heterologous tRNAPhe from yeast as compared to the homologous one. This difference possibly indicates some specificity of the E. coli ribosome for tRNAs from the same organism.  相似文献   
4.
The influence of spermine on the structural dynamics of yeast tRNAPhe   总被引:1,自引:0,他引:1  
A tRNAPhe derivative carrying ethidium at position 37 in the anticodon loop has been used to study the effect of spermine on conformational transitions of the tRNA. As previously reported (Ehrenberg, M., Rigler, R. and Wintermeyer, W. (1979) Biochemistry 18, 4588-4599) in the tRNA derivative the ethidium is present in three states (T1-T3) characterized by different fluorescence decay rates. T-jump experiments show two transitions between the states, a fast one (relaxation time 10-100 ms) between T1 and T2, and a slow one (100-1000 ms) between T2 and T3. In the presence of spermine the fast transition shows a negative temperature coefficient indicating the existence of a preequilibrium with a negative reaction enthalpy. Spermine shifts the distribution of states towards T3, as does Mg2+, but the final ratio [T2]/[T1] obtained with spermine is higher than with Mg2+, which we tentatively interpret to mean that spermine stabilizes one particular conformation of the anticodon loop.  相似文献   
5.
A tRNAPhe derivative carrying ethidium at position 37 in the anticodon loop has been used to study the effect of spermine on conformational transitions of the tRNA. As previously reported (Ehrenberg, M., Rigler, R. and Wintermeyer, W. (1979) Biochemistry 18, 4588–4599) in the tRNA derivative the ethidium is present in three states (T1–T3) characterized by different fluorescence decay rates. T-jump experiments show two transitions between the states, a fast one (relaxation time 10–100 ms) between T1 and T2, and a slow one (100–1000 ms) between T2 and T3. In the presence of spermine the fast transition shows a negative temperature coefficient indicating the existence of a preequilibrium with a negative reaction enthalpy. Spermine shifts the distribution of states towards T3, as does Mg2+, but the final ratio obtained with spermine is higher than with Mg2+, which we tentatively interpret to mean that spermine stabilizes one particular conformation of the anticodon loop.  相似文献   
6.
A tRNAPhe derivative carrying ethidium at position 37 in the anticodon loop has been used to study the effect of spermine on conformational transitions of the tRNA. As previously reported (Ehrenberg, M., Rigler, R. and Wintermeyer, W. (1979) Biochemistry 18, 4588–4599) in the tRNA derivative the ethidium is present in three states (T1–T3) characterized by different fluorescence decay rates. T-jump experiments show two transitions between the states, a fast one (relaxation time 10–100 ms) between T1 and T2, and a slow one (100–1000 ms) between T2 and T3. In the presence of spermine the fast transition shows a negative temperature coefficient indicating the existence of a preequilibrium with a negative reaction enthalpy. Spermine shifts the distribution of states towards T3, as does Mg2+, but the final ratio [T2][T1] obtained with spermine is higher than with Mg2+, which we tentatively interpret to mean that spermine stabilizes one particular conformation of the anticodon loop.  相似文献   
7.
8.
Topography of the E site on the Escherichia coli ribosome.   总被引:6,自引:2,他引:4       下载免费PDF全文
Three photoreactive tRNA probes have been utilized in order to identify ribosomal components that are in contact with the aminoacyl acceptor end and the anticodon loop of tRNA bound to the E site of Escherichia coli ribosomes. Two of the probes were derivatives of E. coli tRNA(Phe) in which adenosines at positions 73 and 76 were replaced by 2-azidoadenosine. The third probe was derived from yeast tRNA(Phe) by substituting wyosine at position 37 with 2-azidoadenosine. Despite the modifications, all of the photoreactive tRNA species were able to bind to the E site of E. coli ribosomes programmed with poly(A) and, upon irradiation, formed covalent adducts with the ribosomal subunits. The tRNA(Phe) probes modified at or near the 3' terminus exclusively labeled protein L33 in the 50S subunit. The tRNA(Phe) derivative containing 2-azidoadenosine within the anticodon loop became cross-linked to protein S11 as well as to a segment of the 16S rRNA encompassing the 3'-terminal 30 nucleotides. We have located the two extremities of the E site-bound tRNA on the ribosomal subunits according to the positions of L33, S11 and the 3' end of 16S rRNA defined by immune electron microscopy. Our results demonstrate conclusively that the E site is topographically distinct from either the P site or the A site, and that it is located alongside the P site as expected for the tRNA exit site.  相似文献   
9.
The interaction of ethidium-labeled tRNAPhe from yeast with ribosomes from yeast and Escherichia coli was studied by stead-state measurements of fluorescence intensity and polarization. The ethidium label was covalently inserted into either the anticodon or the dihydrouridine loop of the tRNA. The codon-independent formation of a tRNA-ribosome complex led to only a moderate increase of the observed fluorescence polarization indicating a considerable internal mobility of the labeled parts of the tRNA molecule in the ribosome complex. When the ribosome complex was formed in the presence of poly(U), the probes both in the dihydrouridine loop and in the anticodon loop were strongly immobilized, the latter exhibiting a substantial increase in fluorescence intensity. A smaller intensity change was observed when E. coli ribosomes were used, although the extent of immobilization was found to be similar in this case. Competition experiments with non-labeled tRNAPhe showed that the labeled tRNAPheEtd was readily released from the complex with yeast ribosomes when poly(U) was absent, whereas in the presence of poly(U) it was bound practically irreversibly. The finding that the mobility of a probe in the dihydrouridine loop is affected by the codon-anticodon interaction on the ribosome suggests a conformational change of the ribosome-bound tRNA which may involve opening of the tertiary structure interactions between the dihydrouridine and the TpsiC loop.  相似文献   
10.
The complexes of N-AcPhe-tRNAPhe (or non-aminoacylated tRNAPhe) from yeast with 70S ribosomes from E. coli have been studied fluorimetrically utilizing wybutine, the fluorophore naturally occurring next to the 3' side of the anticodon, as a probe for conformational changes of the anticodon loop. The fluorescence parameters are very similar for tRNA bound to both ribosomal sites, thus excluding an appreciable conformational change of the anticodon loop upon translocation. The spectral change observed upon binding of tRNAPhe to the P site even in the absence of poly(U) is similar to the one brought about by binding of poly(U) alone to the tRNA. This effect may be due to a hydrophobic binding site of the anticodon loop or to a conformational change of the loop induced by binding interactions of various tRNA sites including the anticodon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号