首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   49篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   8篇
  2010年   6篇
  2009年   8篇
  2008年   4篇
  2007年   12篇
  2006年   14篇
  2005年   15篇
  2004年   10篇
  2003年   10篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   8篇
  1995年   3篇
  1994年   1篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1978年   2篇
排序方式: 共有185条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
Plastid protein coding regions in plants are generally flanked by 3' inverted repeat (IR) sequences. In a previous work (Stern, D. B., and Gruissem, W. (1987) Cell 51, 1145-1157), we have shown that their role may be in RNA stabilization and as a processing signal that establishes the mature mRNA 3' end. In this report we have investigated the stability and protein interaction of chloroplast mRNA 3' IR-RNA sequences in more detail. Progressive deletions into the 3' IR-RNA sequences for the chloroplast cytochrome b6/f subunit IV (petD) mRNA reduce the stability of the RNA, indicating that the potential to form a stem/loop is a minimum requirement for petD 3' IR-RNA stability in vitro. Specific point mutants also destabilize the processed 3' IR-RNA, suggesting an important role for the primary sequence. Gel mobility shift and UV-cross-linking analysis has shown that 3' IR-RNAs of petD and two other chloroplast mRNAs (rbcL and psbA) interact with proteins in vitro. Comparison of the bound petD 3' IR-RNA proteins with proteins that bind to rbcL and psbA reveals that binding of certain proteins is gene-specific. Also, precursor and processed petD 3' IR-RNAs bind different sets of proteins. A single nucleotide transversion (T----A) near the base of the stem eliminates the binding of a 29-kDa protein to the petD 3' IR-RNA precursor. We discuss the possible role of 3' IR-RNA-protein interactions in plastid mRNA 3' end maturation and differential mRNA stability.  相似文献   
5.
Polyadenylation accelerates degradation of chloroplast mRNA.   总被引:13,自引:0,他引:13       下载免费PDF全文
J Kudla  R Hayes    W Gruissem 《The EMBO journal》1996,15(24):7137-7146
The expression of chloroplast genes is regulated by several mechanisms, one of which is the modulation of RNA stability. To understand how this regulatory step is controlled during chloroplast development, we have begun to define the mechanism of plastid mRNA degradation. We show here that the degradation petD mRNA involves endonucleolytic cleavage at specific sites upstream of the 3' stem-loop structure. The endonucleolytic petD cleavage products can be polyadenylated in vitro, and similar polyadenylated RNA products are detectable in vivo. PCR analysis of the psbA and psaA-psaB-rps14 operons revealed other polyadenylated endonucleolytic cleavage products, indicating that poly(A) addition appears to be an integral modification during chloroplast mRNA degradation. Polyadenylation promotes efficient degradation of the cleaved petD RNAs by a 3'-5' exoribonuclease. Furthermore, polyadenylation also plays an important role in the degradation of the petD mRNA 3' end. Although the 3' end stem-loop is usually resistant to nucleases, adenylation renders the secondary structure susceptible to the 3'-5' exoribonuclease. Analysis of 3' ends confirms that polyadenylation occurs in vivo, and reveals that the extent of adenylation increases during the degradation of plastid mRNA in the dark. Based on these results, we propose a novel mechanism for polyadenylation in the regulation of plastid mRNA degradation.  相似文献   
6.
A E Loraine  S Yalovsky  S Fabry    W Gruissem 《Plant physiology》1996,110(4):1337-1347
Rab proteins attach to membranes along the secretory pathway where they contribute to distinct steps in vesicle-mediated transport. To bind membranes, Rab proteins in fungal and animal cells must be isoprenylated by the enzyme Rab geranylgeranyl transferase (Rab GGTase). We have isolated three tomato (Lycopersicon esculentum, M.) cDNAs (LeRab 1A, B, and C) encoding Rab-like proteins and show here that all three are substrates for a Rab GGTase-like activity in plant cells. The plant enzyme is similar to mammalian Rab GGTase in that the plant activity (a) is enhanced by detergent and (b) is inhibited by mutant Rab lacking a prenylation consensus sequence. LeRab1B contains a rare prenylation target motif and was the best substrate for the plant, but not the yeast, Rab GGTase. LeRab1A, B, and C are functional homologs of the Saccharomyces cerevisiae Rab protein encoded by YPT1 and are differentially expressed in tomato. LeRab1A mRNA, but not that of LeRab1B or C, is induced by ethylene in tomato seedlings and is also upregulated in ripening fruit. The increase in LeRab1A mRNA expression in ripe fruit may be linked to increased synthesis and export of enzymes like polygalacturonase, pectin esterase, and other enzymes important in fruit softening.  相似文献   
7.
Posttranslational isoprenylation of some small GTP-binding proteins is required for their biological activity. Rab geranylgeranyl transferase (Rab GGTase) uses geranylgeranyl pyrophosphate to modify Rab proteins, its only known substrates. Geranylgeranylation of Rabs is believed to promote their association with target membranes and interaction with other proteins. Plants, like other eukaryotes, contain Rab-like proteins that are associated with intracellular membranes. However, to our knowledge, the geranylgeranylation of Rab proteins has not yet been characterized from any plant source. This report presents an activity assay that allows the characterization of prenylation of Rab-like proteins in vitro, by protein extracts prepared from plants. Tomato Rab1 proteins and mammalian Rab1a were modified by geranylgeranyl pyrophosphate but not by farnesyl pyrophosphate. This modification required a conserved cysteine-cysteine motif. A mutant form lacking the cysteine-cysteine motif could not be modified, but inhibited the geranylgeranylation of its wild-type homolog. The tomato Rab proteins were modified in vitro by protein extract prepared from yeast, but failed to become modified when the protein extract was prepared from a yeast strain containing a mutant allele for the [alpha] subunit of yeast Rab GGTase (bet4 ts). These results demonstrate that plant cells, like other eukaryotes, contain Rab GGTase-like activity.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号