首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2766篇
  免费   196篇
  2023年   12篇
  2022年   53篇
  2021年   73篇
  2020年   58篇
  2019年   67篇
  2018年   86篇
  2017年   71篇
  2016年   98篇
  2015年   174篇
  2014年   167篇
  2013年   192篇
  2012年   196篇
  2011年   175篇
  2010年   130篇
  2009年   105篇
  2008年   172篇
  2007年   140篇
  2006年   123篇
  2005年   105篇
  2004年   96篇
  2003年   91篇
  2002年   117篇
  2001年   47篇
  2000年   32篇
  1999年   36篇
  1998年   23篇
  1997年   18篇
  1996年   16篇
  1995年   12篇
  1994年   18篇
  1992年   8篇
  1991年   12篇
  1990年   14篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   7篇
  1984年   11篇
  1983年   9篇
  1981年   6篇
  1978年   7篇
  1977年   14篇
  1974年   6篇
  1973年   5篇
  1972年   5篇
  1967年   4篇
  1949年   5篇
  1948年   5篇
  1935年   4篇
  1932年   5篇
排序方式: 共有2962条查询结果,搜索用时 15 毫秒
1.
2.
Electron Paramagnetic Resonance (EPR) monitored redox titrations are a powerful method to determine the midpoint potential of cofactors in proteins and to identify and quantify the cofactors in their detectable redox state.The technique is complementary to direct electrochemistry (voltammetry) approaches, as it does not offer information on electron transfer rates, but does establish the identity and redox state of the cofactors in the protein under study. The technique is widely applicable to any protein containing an electron paramagnetic resonance (EPR) detectable cofactor.A typical titration requires 2 ml protein with a cofactor concentration in the range of 1-100 µM. The protein is titrated with a chemical reductant (sodium dithionite) or oxidant (potassium ferricyanide) in order to poise the sample at a certain potential. A platinum wire and a Ag/AgCl reference electrode are connected to a voltmeter to measure the potential of the protein solution. A set of 13 different redox mediators is used to equilibrate between the redox cofactors of the protein and the electrodes. Samples are drawn at different potentials and the Electron Paramagnetic Resonance spectra, characteristic for the different redox cofactors in the protein, are measured. The plot of the signal intensity versus the sample potential is analyzed using the Nernst equation in order to determine the midpoint potential of the cofactor.  相似文献   
3.
4.
5.
6.
Protoplasts were isolated from an embryogenic cell suspension culture derived from microspores of Brassica napus cv. Jet Neuf. Protoplast yield varied with the cell suspension growth medium. Optimization of protoplast plating density, manipulation of culture medium, carbon source and medium matrix, and inclusion of Ficoll resulted in protoplast plating efficiencies close to 30%. Placement of the protoplasts close to the gas interface contributed greatly to the elevated plating efficiency. Low density cultures could be induced to regenerate calli at optimum plating efficiencies if grown in the presence of nurse culture. This is of great advantage for manipulation of individual protoplasts or for microinjection. Plants were regenerated directly from the cell suspension or from the protoplast cultures.Abbreviations BA N6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA naphthaleneacetic acid  相似文献   
7.
8.
Summary Phytase production byAspergillus ficuum was studied using solid state cultivation on several cereal grains and legume seeds. The microbial phytase was used to hydrolyze the phytate in soybean meal and cotton seed meal. Wheat bran, soybean meal, cottonseed meal and corn meal supported good fungal growth and yielded a high level of phytase when an adequate amount of moisture was present. The level of phytase production on solid substrate was higher than that obtained by submerged liquid fermentation. Higher levels of phosphorus (more than 10 mg Pi/100 g substrate) in the growth medium (static culture) inhibited phytase synthesis, and the degree of phosphorus inhibition was less apparent in semisolid medium than in liquid medium. A static cultivation on semisolid substrate produced a higher level of phytase (2-20-fold) than that obtained by agitated cultivation. The minimal amount of water required for growth and enzyme production on those substrates was about 15%, while the optimum level for phytase production was between 25 and 35% and that for cell growth was above 50%. Optimum pH for phytase production was between 4 and 6.A ficuum grew well on raw (unheated) substrate containing a minimal amount of water and produced as much phytase as on heated substrate. About half of the phytic acid in soybean meal and cottonseed meal was hydrolyzed by treatment withA. ficuum phytase.  相似文献   
9.
Spinach ferredoxin contains a single ferredoxin which can be chemically modified with diethylpyrocarbonate. By varying the concentration of diethylpyrocarbonate modified ferredoxins could be prepared which had only one or both of the imidazole nitrogens of the histidine modified. A small amount of tyrosine was also modified. Ferredoxin with only one of the imidazole nitrogens modified was fully active in NADP photoreduction by chloroplast membranes. This activity was lost as the second imidazole nitrogen was modified. The results suggest an essential role for the single histidine of ferredoxin.  相似文献   
10.
Effect of temperature on drought resistance and growth of cotton plants   总被引:1,自引:0,他引:1  
In cotton plants ( Gossypium hirsutum L. cv. B.J.A.) the temperature of the roots affected both root and shoot growth, as did the temperature of the shoot. Drought resistance increased when the temperature imposed on roots (27°C) was lower than that imposed on shoots (17°C); the result was a decrease in both transpiration and flow of root sap. Stomatal characteristics as measured by density, index and resistance, depended only on shoot temperature. Differences in drought resistance, depended only on shoot temperature. Differences in drought resistance seem to be a result of changes in transpiration flow modulated by the amount of absorbed water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号