首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   6篇
  87篇
  2023年   2篇
  2022年   4篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   9篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   8篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1997年   2篇
  1994年   1篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
1.
The fluorescence polarization of fluorescent derivatives of hemoglobin and myoglobin was measured as a function of the concentration of added polymers (PEG-6 000, PEG-20 000) and globular proteins (lysozyme, ribonuclease A, beta-lactoglobulin). The results indicated that the effective size and shape of 1-anilino-9-naphthalene sulfonate myoglobin are unaltered in the presence of up to 25 g/dl poly(ethylene glycol), whereas they are significantly altered in the presence of comparable concentrations of other proteins. The results are consistent with the hypothesis that in the presence of high concentrations of added protein, 1-anilino-9-naphthalene sulfonate myoglobin self-associates to form a dimer similar in size and shape to 1-anilino-9-naphthalene sulfonate hemoglobin.  相似文献   
2.
Although temporal calibration is widely recognized as critical for obtaining accurate divergence-time estimates using molecular dating methods, few studies have evaluated the variation resulting from different calibration strategies. Depending on the information available, researchers have often used primary calibrations from the fossil record or secondary calibrations from previous molecular dating studies. In analyses of flowering plants, primary calibration data can be obtained from macro- and mesofossils (e.g., leaves, flowers, and fruits) or microfossils (e.g., pollen). Fossil data can vary substantially in accuracy and precision, presenting a difficult choice when selecting appropriate calibrations. Here, we test the impact of eight plausible calibration scenarios for Nothofagus (Nothofagaceae, Fagales), a plant genus with a particularly rich and well-studied fossil record. To do so, we reviewed the phylogenetic placement and geochronology of 38 fossil taxa of Nothofagus and other Fagales, and we identified minimum age constraints for up to 18 nodes of the phylogeny of Fagales. Molecular dating analyses were conducted for each scenario using maximum likelihood (RAxML + r8s) and Bayesian (BEAST) approaches on sequence data from six regions of the chloroplast and nuclear genomes. Using either ingroup or outgroup constraints, or both, led to similar age estimates, except near strongly influential calibration nodes. Using "early but risky" fossil constraints in addition to "safe but late" constraints, or using assumptions of vicariance instead of fossil constraints, led to older age estimates. In contrast, using secondary calibration points yielded drastically younger age estimates. This empirical study highlights the critical influence of calibration on molecular dating analyses. Even in a best-case situation, with many thoroughly vetted fossils available, substantial uncertainties can remain in the estimates of divergence times. For example, our estimates for the crown group age of Nothofagus varied from 13 to 113 Ma across our full range of calibration scenarios. We suggest that increased background research should be made at all stages of the calibration process to reduce errors wherever possible, from verifying the geochronological data on the fossils to critical reassessment of their phylogenetic position.  相似文献   
3.
Anther culture medium was prepared with different types and concentrations of cytokinins to gain greater insight into the control of embryo formation during Brassica oleracea L. var. italica (broccoli) anther culture. The independent addition of the four cytokinins tested had widely divergent effects dependent upon cytokinin concentration and the genetic background of the test plants. All cytokinins were generally inhibitory at high concentrations, however, individual plants showed significant stimulation of embyro formation at typical physiological levels. The influence of cytokinins was highly cultivar-specific, some lines were stimulated, others inhibited and still other test lines were largely unaffected. Although the addition of cytokinins was needed for embryo formation for some plants, in no instance were cytokinins able to replace the inductive effect of high-temperature treatments.  相似文献   
4.
* Variation in the size and shape (physiognomy) of leaves has long been correlated to climate, and paleobotanists have used these correlations to reconstruct paleo-climate. Most studies focus on site-level means of largely nonoverlapping species sets. The sensitivity of leaf shape to climate within species is poorly known, which limits our general understanding of leaf-climate relationships and the value of intraspecific patterns for paleoclimate reconstructions. * The leaf physiognomy of two species whose native North American ranges span large climatic gradients (Acer rubrum and Quercus kelloggii) was quantified and correlated to mean annual temperature (MAT). Quercus kelloggii was sampled across a wide elevation range, but A. rubrum was sampled in strictly lowland areas. * Within A. rubrum, leaf shape correlates with MAT in a manner that is largely consistent with previous site-level studies; leaves from cold climates are toothier and more highly dissected. By contrast, Q. kelloggii is largely insensitive to MAT; instead, windy conditions with ample plant-available water may explain the preponderance of small teeth at high elevation sites, independent of MAT. * This study highlights the strong correspondence between leaf form and climate within some species, and demonstrates that intraspecific patterns may contribute useful information towards reconstructing paleoclimate.  相似文献   
5.
Nearly all data regarding land-plant turnover across the Cretaceous/Paleogene boundary come from western North America, relatively close to the Chicxulub, Mexico impact site. Here, we present a palynological analysis of a section in Patagonia that shows a marked fall in diversity and abundance of nearly all plant groups across the K/Pg interval. Minimum diversity occurs during the earliest Danian, but only a few palynomorphs show true extinctions. The low extinction rate is similar to previous observations from New Zealand. The differing responses between the Southern and Northern hemispheres could be related to the attenuation of damage with increased distance from the impact site, to hemispheric differences in extinction severity, or to both effects. Legacy effects of the terminal Cretaceous event also provide a plausible, partial explanation for the fact that Paleocene and Eocene macrofloras from Patagonia are among the most diverse known globally. Also of great interest, earliest Danian assemblages are dominated by the gymnosperm palynomorphs Classopollis of the extinct Mesozoic conifer family Cheirolepidiaceae. The expansion of Classopollis after the boundary in Patagonia is another example of typically Mesozoic plant lineages surviving into the Cenozoic in southern Gondwanan areas, and this greatly supports previous hypotheses of high latitude southern regions as biodiversity refugia during the end-Cretaceous global crisis.  相似文献   
6.
    
Wild Pacific salmon, including Chinook salmon Oncorhynchus tshawytscha, have been supplemented with hatchery propagation for over 50 years in support of increased ocean harvest, mitigation for hydroelectric development, and conservation of threatened populations. In Canada, the Wild Salmon Policy for Pacific salmon was established with the goal of maintaining and restoring healthy and diverse Pacific salmon populations, making conservation of wild salmon and their habitats the highest priority for resource management decision-making. For policy implementation, a new approach to the assessment and management of Chinook salmon and the associated hatchery production and fisheries management are needed. Implementation of genetic stock identification (GSI) and parentage-based tagging (PBT) for marine fisheries assessment may overcome problems associated with coded-wire tag-based (CWT) assessment and management of Chinook salmon fisheries, providing at a minimum information equivalent to that derived from the CWT program. GSI and PBT were used to identify Chinook salmon sampled in 2018 and 2019 marine fisheries (18,819 individuals genotyped) in British Columbia to specific conservation units (CU), populations, and broodyears. Individuals were genotyped at 391 single nucleotide polymorphisms via direct sequencing of amplicons. Very high accuracy of assignment to population and age (>99.5%) via PBT was observed for 1994 Chinook salmon of ages 2–4 years, with a 105,722–individual, 380–population baseline available for assignment. Application of a GSI-PBT system of identification to individuals in 2019 fisheries provided high-resolution estimates of stock composition, catch, and exploitation rate by CU or population, with fishery exploitation rates directly comparable to those provided by CWTs for 13 populations. GSI and PBT provide an alternate, cheaper, and more effective method in the assessment and management of Canadian-origin Chinook salmon relative to CWTs, and an opportunity for a genetics-based system to replace the current CWT system for salmon assessment.  相似文献   
7.
    
Objective:Characterise the spatiotemporal trabecular and cortical bone responses to complete spinal cord injury (SCI) in young rats.Methods:8-week-old male Wistar rats received T9-transection SCI and were euthanised 2-, 6-, 10- or 16-weeks post-surgery. Outcome measures were assessed using micro-computed tomography, mechanical testing, serum markers and Fourier-transform infrared spectroscopy.Results:The trabecular and cortical bone responses to SCI are site-specific. Metaphyseal trabecular BV/TV was 59% lower, characterised by fewer and thinner trabeculae at 2-weeks post-SCI, while epiphyseal BV/TV was 23% lower with maintained connectivity. At later-time points, metaphyseal BV/TV remained unchanged, while epiphyseal BV/TV increased. The total area of metaphyseal and mid-diaphyseal cortical bone were lower from 2-weeks and between 6- and 10-weeks post-SCI, respectively. This suggested that SCI-induced bone changes observed in the rat model were not solely attributable to bone loss, but also to suppressed bone growth. No tissue mineral density differences were observed at any time-point, suggesting that decreased whole-bone mechanical properties were primarily the result of changes to the spatial distribution of bone.Conclusion:Young SCI rat trabecular bone changes resemble those observed clinically in adult and paediatric SCI, while cortical bone changes resemble paediatric SCI only.  相似文献   
8.
9.
10.
    
Eitan Wilf 《Ethnos》2015,80(1):1-22
In this article, I rely on Michel Foucault's notion of ‘technologies of the self’ to theorize the micro-practices by which individuals actively negotiate the reconfiguration of their sensory skills as a result of modernization processes. In doing so, I draw on ethnographic fieldwork I conducted in a collegiate jazz music program in the USA. By exploring a number of interactional games in which jazz students attempt to negotiate the challenge of cultivating aural skills in a pedagogical context that embraces visually mediated modes of knowledge production and transmission as a result of the professionalization and rationalization of jazz training, I inquire into the conditions of possibility for sensory agency under modernity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号