首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2009年   1篇
  2006年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
To investigate the effect of elevated plasma free fatty acid (FFA) concentrations on splanchnic glucose uptake (SGU), we measured SGU in nine healthy subjects (age, 44 +/- 4 yr; body mass index, 27.4 +/- 1.2 kg/m(2); fasting plasma glucose, 5.2 +/- 0.1 mmol/l) during an Intralipid-heparin (LIP) infusion and during a saline (Sal) infusion. SGU was estimated by the oral glucose load (OGL)-insulin clamp method: subjects received a 7-h euglycemic insulin (100 mU x m(-2) x min(-1)) clamp, and a 75-g OGL was ingested 3 h after the insulin clamp was started. After glucose ingestion, the steady-state glucose infusion rate (GIR) during the insulin clamp was decreased to maintain euglycemia. SGU was calculated by subtracting the integrated decrease in GIR during the period after glucose ingestion from the ingested glucose load. [3-(3)H]glucose was infused during the initial 3 h of the insulin clamp to determine rates of endogenous glucose production (EGP) and glucose disappearance (R(d)). During the 3-h euglycemic insulin clamp before glucose ingestion, R(d) was decreased (8.8 +/- 0.5 vs. 7.6 +/- 0.5 mg x kg(-1) x min(-1), P < 0.01), and suppression of EGP was impaired (0.2 +/- 0.04 vs. 0.07 +/- 0.03 mg x kg(-1) x min(-1), P < 0.01). During the 4-h period after glucose ingestion, SGU was significantly increased during the LIP vs. Sal infusion study (30 +/- 2 vs. 20 +/- 2%, P < 0.005). In conclusion, an elevation in plasma FFA concentration impairs whole body glucose R(d) and insulin-mediated suppression of EGP in healthy subjects but augments SGU.  相似文献   
2.
The purpose of this study was to determine the factors contributing to the ability of exercise to enhance insulin-stimulated glucose disposal. Sixteen insulin-resistant nondiabetic and seven Type 2 diabetic subjects underwent two hyperinsulinemic (40 mU x m-2 x min-1) clamps, once without and once with concomitant exercise at 70% peak O2 consumption. Exercise was begun at the start of insulin infusion and was performed for 30 min. Biopsies of the vastus lateralis were performed before and after 30 min of insulin infusion (immediately after cessation of exercise). Exercise synergistically increased insulin-stimulated glucose disposal in nondiabetic [from 4.6 +/- 0.4 to 9.5 +/- 0.8 mg x kg fat-free mass (FFM)-1x min-1] and diabetic subjects (from 4.3 +/- 1.0 to 7.9 +/- 0.7 mg. kg FFM-1x min-1) subjects. The rate of glucose disposal also was significantly greater in each group after cessation of exercise. Exercise enhanced insulin-stimulated increases in glycogen synthase fractional velocity in control (from 0.07 +/- 0.02 to 0.22 +/- 0.05, P < 0.05) and diabetic (from 0.08 +/- 0.03 to 0.15 +/- 0.03, P < 0.01) subjects. Exercise also enhanced insulin-stimulated glucose storage (glycogen synthesis) in nondiabetic (2.9 +/- 0.9 vs. 4.9 +/- 1.1 mg x kg FFM-1x min-1) and diabetic (1.7 +/- 0.5 vs. 4.2 +/- 0.8 mg x kg FFM-1. min-1) subjects. Increased glucose storage accounted for the increase in whole body glucose disposal when exercise was performed during insulin stimulation in both groups; effects of exercise were correlated with enhancement of glucose disposal and glucose storage (r = 0.93, P < 0.001). Exercise synergistically enhanced insulin-stimulated insulin receptor substrate 1-associated phosphatidylinositol 3-kinase activity (P < 0.05) and Akt Ser473 phosphorylation (P < 0.05) in nondiabetic subjects but had little effect in diabetic subjects. The data indicate that exercise, performed in conjunction with insulin infusion, synergistically increases insulin-stimulated glucose disposal compared with insulin alone. In nondiabetic and diabetic subjects, increased glycogen synthase activation is likely to be involved, in part, in this effect. In nondiabetic, but not diabetic, subjects, exercise-induced enhancement of insulin stimulation of the phosphatidylinositol 3-kinase pathway is also likely to be involved in the exercise-induced synergistic enhancement of glucose disposal.  相似文献   
3.
4.

Background  

To study the factors predictive for seizure control in non-ketotic hyperglycemic induced seizures (NKHS).  相似文献   
5.
Oversupply and underutilization of lipid fuels are widely recognized to be strongly associated with insulin resistance in skeletal muscle. Recent attention has focused on the mechanisms underlying this effect, and defects in mitochondrial function have emerged as a potential player in this scheme. Because evidence indicates that lipid oversupply can produce abnormalities in extracellular matrix composition and matrix changes can affect the function of mitochondria, the present study was undertaken to determine whether muscle from insulin-resistant, nondiabetic obese subjects and patients with type 2 diabetes mellitus had increased collagen content. Compared with lean control subjects, obese and type 2 diabetic subjects had reduced muscle glucose uptake (P<0.01) and decreased insulin stimulation of tyrosine phosphorylation of insulin receptor substrate-1 and its ability to associate with phosphatidylinositol 3-kinase (P<0.01 and P<.05). Because it was assayed by total hydroxyproline content, collagen abundance was increased in muscle from not only type 2 diabetic patients but also nondiabetic obese subjects (0.26+/-0.05, 0.57+/-0.18, and 0.67+/- 0.20 microg/mg muscle wet wt, lean controls, obese nondiabetics, and type 2 diabetics, respectively), indicating that hyperglycemia itself could not be responsible for this effect. Immunofluorescence staining of muscle biopsies indicated that there was increased abundance of types I and III collagen. We conclude that changes in the composition of the extracellular matrix are a general characteristic of insulin-resistant muscle.  相似文献   
6.
The effects of insulin-like growth factor I (IGF-I) and insulin on free fatty acid (FFA) and glucose metabolism were compared in eight control and eight type 2 diabetic subjects, who received a two-step euglycemic hyperinsulinemic (0.25 and 0.5 mU x kg(-1) x min(-1)) clamp and a two-step euglycemic IGF-I (26 and 52 pmol x kg(-1) x min(-1)) clamp with [3-(3)H]glucose, [1-(14)C]palmitate, and indirect calorimetry. The insulin and IGF-I infusion rates were chosen to augment glucose disposal (R(d)) to a similar extent in control subjects. In type 2 diabetic subjects, stimulation of R(d) (second clamp step) in response to both insulin and IGF-I was reduced by approximately 40-50% compared with control subjects. In control subjects, insulin was more effective than IGF-I in suppressing endogenous glucose production (EGP) during both clamp steps. In type 2 diabetic subjects, insulin-mediated suppression of EGP was impaired, whereas EGP suppression by IGF-I was similar to that of controls. In both control and diabetic subjects, IGF-I-mediated suppression of plasma FFA concentration and inhibition of FFA turnover were markedly impaired compared with insulin (P < 0.01-0.001). During the second IGF-I clamp step, suppression of plasma FFA concentration and FFA turnover was impaired in diabetic vs. control subjects (P < 0.05-0.01). CONCLUSIONS: 1) IGF-I is less effective than insulin in suppressing EGP and FFA turnover; 2) insulin-resistant type 2 diabetic subjects also exhibit IGF-I resistance in skeletal muscle. However, suppression of EGP by IGF-I is not impaired in diabetic individuals, indicating normal hepatic sensitivity to IGF-I.  相似文献   
7.
Although chronic hyperinsulinemia has been shown to induce insulin resistance, the basic cellular mechanisms responsible for this phenomenon are unknown. The present study was performed 1) to determine the time-related effect of physiological hyperinsulinemia on glycogen synthase (GS) activity, hexokinase II (HKII) activity and mRNA content, and GLUT-4 protein in muscle from healthy subjects, and 2) to relate hyperinsulinemia-induced alterations in these parameters to changes in glucose metabolism in vivo. Twenty healthy subjects had a 240-min euglycemic insulin clamp study with muscle biopsies and then received a low-dose insulin infusion for 24 (n = 6) or 72 h (n = 14) (plasma insulin concentration = 121 +/- 9 or 143 +/- 25 pmol/l, respectively). During the baseline insulin clamp, GS fractional velocity (0.075 +/- 0.008 to 0.229 +/- 0.02, P < 0.01), HKII mRNA content (0.179 +/- 0.034 to 0.354 +/- 0.087, P < 0.05), and HKII activity (2.41 +/- 0.63 to 3.35 +/- 0.54 pmol x min(-1) x ng(-1), P < 0.05), as well as whole body glucose disposal and nonoxidative glucose disposal, increased. During the insulin clamp performed after 24 and 72 h of sustained physiological hyperinsulinemia, the ability of insulin to increase muscle GS fractional velocity, total body glucose disposal, and nonoxidative glucose disposal was impaired (all P < 0.01), whereas the effect of insulin on muscle HKII mRNA, HKII activity, GLUT-4 protein content, and whole body rates of glucose oxidation and glycolysis remained unchanged. Muscle glycogen concentration did not change [116 +/- 28 vs. 126 +/- 29 micromol/kg muscle, P = nonsignificant (NS)] and was not correlated with the change in nonoxidative glucose disposal (r = 0.074, P = NS). In summary, modest chronic hyperinsulinemia may contribute directly (independent of change in muscle glycogen concentration) to the development of insulin resistance by its impact on the GS pathway.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号