排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
The amount of diaminopimelic acid (Dap) in the cell wall of Escherichia coli was measured in two ways. A radiochemical method first described by us in 1985 (F. B. Wientjes, E. Pas, P. E. M. Taschner, and C. L. Woldringh, J. Bacteriol. 164:331-337, 1985) is based on the steady-state incorporation of [3H]Dap during several generations. Knowing the cell concentration and the specific activity of the [3H]Dap, one can calculate the number of Dap molecules per sacculus. The second method measures the Dap content chemically in sacculi isolated from a known number of cells. With both methods, a value of 3.5 x 10(6) Dap molecules per sacculus was obtained. Combined with electron microscopic measurements of the surface area of the cells, the data indicate an average surface area per disaccharide unit of ca. 2.5 nm2. This finding suggests that the peptidoglycan is basically a monolayered structure. 相似文献
2.
In this work, we have investigated the role of the individual antenna complexes and of the low-energy forms in excitation energy transfer and trapping in Photosystem I of higher plants. To this aim, a series of Photosystem I (sub)complexes with different antenna size/composition/absorption have been studied by picosecond fluorescence spectroscopy. The data show that Lhca3 and Lhca4, which harbor the most red forms, have similar emission spectra (λmax = 715–720 nm) and transfer excitation energy to the core with a relative slow rate of ∼25/ns. Differently, the energy transfer from Lhca1 and Lhca2, the “blue” antenna complexes, occurs about four times faster. In contrast to what is often assumed, it is shown that energy transfer from the Lhca1/4 and the Lhca2/3 dimer to the core occurs on a faster timescale than energy equilibration within these dimers. Furthermore, it is shown that all four monomers contribute almost equally to the transfer to the core and that the red forms slow down the overall trapping rate by about two times. Combining all the data allows the construction of a comprehensive picture of the excitation-energy transfer routes and rates in Photosystem I. 相似文献
3.
Preparation and characterization of monoclonal antibodies against native membrane-bound penicillin-binding protein 1B of Escherichia coli. 总被引:1,自引:6,他引:1
下载免费PDF全文

T Den Blaauwen F B Wientjes A H Kolk B G Spratt N Nanninga 《Journal of bacteriology》1989,171(3):1394-1401
We prepared monoclonal antibodies against penicillin-binding protein 1B (PBP 1B) of Escherichia coli to study the membrane topology, spatial organization, and enzyme activities of this protein. The majority of the antibodies derived with PBP 1B as the immunogen reacted against the carboxy terminus. To obtain monoclonal antibodies recognizing other epitopes, we used PBP 1B lacking the immunodominant carboxy-terminal 65 amino acids as the immunogen. Eighteen monoclonal antibodies directed against membrane-bound PBP 1B were isolated and characterized. The epitopes recognized by those monoclonal antibodies were located with various truncated forms of PBP 1B. We could distinguish four different epitope areas located on different parts of the molecule. Interestingly, we could not isolate monoclonal antibodies against the amino terminus, although they were specifically selected for. This is attributed to its predicted extreme hydrophilicity and flexibility, which could make the amino terminus very sensitive to proteolytic degradation. All antibodies reacted against native PBP 1B in a dot-blot immunobinding assay. One monoclonal antibody also recognized PBP 1B in a completely sodium dodecyl sulfate-denatured form. This suggests that all the other monoclonal antibodies recognize conformational epitopes. These properties make the monoclonal antibodies suitable tools for further studies. 相似文献
4.
M. Guillaume Wientjes 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1991,563(2)
A high-performance liquid chromatographic analysis for the anti-AIDS drug 2',3'-dideoxyinosine (ddI) in rat plasma and urine, with a limit of detection of 0.2 μg/ml and requiring a sample size of 100 μl is described. Diluted plasma or urine samples were extracted using a C18 solid-phase extraction column. Retention of ddI on more polar solid-phase extraction columns was insufficient for sample clean-up. This method is useful for pharmacokinetic studies of ddI in small rodents. 相似文献
5.
The sidedness of the respiratory nitrate reductase in the cytoplasmic membrane of Bacillus licheniformis and Klebsiella aerogenes was studied by indirect immunofluorescence and by lactoperoxidase-catalyzed iodination. It was shown that the two subunits (Mr 150000 and 57000, respectively) of nitrate reductase of B. licheniformis are localized on the cytoplasmic side of the membrane, whereas the K. aerogenes enzyme is a transmembrane protein. The different localization of nitrate reductase in the membranes of these organisms may be related to their different r?le in oxidative phosphorylation. 相似文献
6.
Christo Schiphorst Luuk Achterberg Rodrigo Gmez Rob Koehorst Roberto Bassi Herbert van Amerongen Luca DallOsto Emilie Wientjes 《Plant physiology》2022,188(4):2241
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI–LHCI–LHCII supercomplex. The binding site(s) of the “additional” LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that “additional” LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.The light-harvesting antennae of photosystem I facilitate energy transfer from trimeric light-harvesting complex II to photosystem I in the stroma lamellae membrane. 相似文献
7.
Background
Although simulation studies show that combining multiple breeds in one reference population increases accuracy of genomic prediction, this is not always confirmed in empirical studies. This discrepancy might be due to the assumptions on quantitative trait loci (QTL) properties applied in simulation studies, including number of QTL, spectrum of QTL allele frequencies across breeds, and distribution of allele substitution effects. We investigated the effects of QTL properties and of including a random across- and within-breed animal effect in a genomic best linear unbiased prediction (GBLUP) model on accuracy of multi-breed genomic prediction using genotypes of Holstein-Friesian and Jersey cows.Methods
Genotypes of three classes of variants obtained from whole-genome sequence data, with moderately low, very low or extremely low average minor allele frequencies (MAF), were imputed in 3000 Holstein-Friesian and 3000 Jersey cows that had real high-density genotypes. Phenotypes of traits controlled by QTL with different properties were simulated by sampling 100 or 1000 QTL from one class of variants and their allele substitution effects either randomly from a gamma distribution, or computed such that each QTL explained the same variance, i.e. rare alleles had a large effect. Genomic breeding values for 1000 selection candidates per breed were estimated using GBLUP modelsincluding a random across- and a within-breed animal effect.Results
For all three classes of QTL allele frequency spectra, accuracies of genomic prediction were not affected by the addition of 2000 individuals of the other breed to a reference population of the same breed as the selection candidates. Accuracies of both single- and multi-breed genomic prediction decreased as MAF of QTL decreased, especially when rare alleles had a large effect. Accuracies of genomic prediction were similar for the models with and without a random within-breed animal effect, probably because of insufficient power to separate across- and within-breed animal effects.Conclusions
Accuracy of both single- and multi-breed genomic prediction depends on the properties of the QTL that underlie the trait. As QTL MAF decreased, accuracy decreased, especially when rare alleles had a large effect. This demonstrates that QTL properties are key parameters that determine the accuracy of genomic prediction.Electronic supplementary material
The online version of this article (doi:10.1186/s12711-015-0124-6) contains supplementary material, which is available to authorized users. 相似文献8.
Two unusual characteristics of some outer membrane proteins of Rhizobium leguminosarum are described. First, most of the major outer membrane proteins could only be visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after lysozyme treatment of the isolated cell envelopes, suggesting a very strong, possibly covalent, interaction of these proteins with the peptidoglycan. These peptidoglycan-associated outer membrane proteins belonged to two distinct groups of immunologically related proteins, groups II and III, as defined by typing with monoclonal antibodies. As members of both groups of proteins could be radioactively labeled by growing cells in the presence of N-[3H]acetylglucosamine, we propose that variation in the apparent molecular weight of the antigens within each group is caused by varying numbers of peptidoglycan subunit residues on only two or three different outer membrane proteins. Second, group III outer membrane proteins, with masses of 35 to 46 kilodaltons, formed oligomers stabilized by divalent cations which resisted complete denaturation in 2% sodium dodecyl sulfate at 100 degrees C. Reconstitution experiments showed that of the divalent cations tested, Ca2+ and, to a lesser extent, Mn2+ and Sr2+ were the best stabilizers. 相似文献
9.
A convenient and reliable method has been established that allows a quantitative determination of m-diamino[3H]pimelic acid-labelled murein precursors in 1 ml culture samples of Escherichia coli. Prior to separation by reversed-phase high-pressure liquid chromatography the lipid-linked intermediates were hydrolysed to release the muropeptides. The accuracy for the measurement of UDP-N-acetylmuramylpentapeptide (UDP-MurNAc-pentapeptide) was +/- 1.9% (SD), for undecaprenyl-P-P-MurNAc-pentapeptide (lipid I) +/- 10% (SD) and for undecaprenyl-P-P-(GlcNAc-beta 1----4)MurNAc-pentapeptide (lipid II) +/- 5% (SD). The ratio of UDP-MurNAc-pentapeptide:lipid I:lipid II was about 300:1:3 for E. coli MC4100. The relative cellular concentrations of all three precursor molecules were found not to vary throughout the cell cycle. It is concluded that elongation and division of the murein sacculus is not controlled by oscillations in the concentrations of these late murein precursors. 相似文献
10.
Protein kinase C delta is required for p47phox phosphorylation and translocation in activated human monocytes 总被引:1,自引:0,他引:1
Bey EA Xu B Bhattacharjee A Oldfield CM Zhao X Li Q Subbulakshmi V Feldman GM Wientjes FB Cathcart MK 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(9):5730-5738
Our laboratory is interested in understanding the regulation of NADPH oxidase activity in human monocyte/macrophages. Protein kinase C (PKC) is reported to be involved in regulating the phosphorylation of NADPH oxidase components in human neutrophils; however, the regulatory roles of specific isoforms of PKC in phosphorylating particular oxidase components have not been determined. In this study calphostin C, an inhibitor for both novel PKC (including PKCdelta, -epsilon, -theta;, and -eta) and conventional PKC (including PKCalpha and -beta), inhibited both phosphorylation and translocation of p47phox, an essential component of the monocyte NADPH oxidase. In contrast, GF109203X, a selective inhibitor of classical PKC and PKCepsilon, did not affect the phosphorylation or translocation of p47phox, suggesting that PKCdelta, -theta;, or -eta is required. Furthermore, rottlerin (at doses that inhibit PKCdelta activity) inhibited the phosphorylation and translocation of p47phox. Rottlerin also inhibited O2 production at similar doses. In addition to pharmacological inhibitors, PKCdelta-specific antisense oligodeoxyribonucleotides were used. PKCdelta antisense oligodeoxyribonucleotides inhibited the phosphorylation and translocation of p47phox in activated human monocytes. We also show, using the recombinant p47phox-GST fusion protein, that p47phox can serve as a substrate for PKCdelta in vitro. Furthermore, lysate-derived PKCdelta from activated monocytes phosphorylated p47phox in a rottlerin-sensitive manner. Together, these data suggest that PKCdelta plays a pivotal role in stimulating monocyte NADPH oxidase activity through its regulation of the phosphorylation and translocation of p47phox. 相似文献