首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   2篇
  129篇
  2022年   1篇
  2019年   1篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   6篇
  2012年   10篇
  2011年   5篇
  2010年   7篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   6篇
  2000年   7篇
  1999年   2篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有129条查询结果,搜索用时 0 毫秒
1.
2.
Phylogenetic relationships in the Desmarestiales (Phaeophyceae) were inferred among the monotypic Arthrocladia (Arthrocladiaceae) and 27 isolates from Desmarestiaceae, representing 17 taxa of Desmarestia and the monotypic Antarctic genera Himantothallus and Phaeurus. Phaeurus and Arthrocladia were used as outgroups. Parsimony analyses of nuclear ribosomal DNA internal transcribed spacer (ITS1 and ITS2) sequences, in which gaps were both included and excluded, yielded well-resolved trees with a consistent general branching pattern. A parallel analysis of nine morphological and life-history characters and three ecological characters yielded a similar tree but provided little resolution in the terminal clades. The position of the monotypic Arthrocladia villosa within the Desmarestiales is consistent with monophyly for the order, but its position as the most primitive desmarestialean is not resolvable from the molecular data set. The basal position of Phaeurus, the Antarctic Desmarestia species, and Himantothallus is consistent with the hypothesis of a Southern Hemisphere origin for the family Desmarestiaceae. The more recent Northern Hemisphere “aculeata” clade evolved from an Antarctic ancestor. A “D. aculeata-like” species was ancestral to a lineage characterized by annual sporophytes with high sulfuric acid content, which radiated into many species, widely distributed in both hemispheres. Mapping of morphological and ecological characters onto the molecular tree confirm the informativeness of sulfuric acid-containing vacuoles and unilocular sporangial types. There is good congruence between phylogenetic tree topology and temperature impints in relation to biogeographic distribution, supporting the theory that temperature tolerance is a conservative trait.  相似文献   
3.
In Antarctica ozone depletion is highest during spring, coinciding with the reproduction of many seaweed species. Propagules are the life-stage of an alga most susceptible to environmental perturbations. Therefore, fertile thalli of Iridaea cordata (Turner) Bory (Rhodophyta) were collected in the eulittoral of King George Island (Antarctica) to examine spore susceptibility to ultraviolet radiation (UVR). In the laboratory, freshly released tetraspores were exposed to photosynthetically active radiation (PAR) (400–700 nm), PAR+UV-A (320–700 nm) or PAR+UV-A+UV-B (280–700 nm). Photosynthetic efficiency was measured during 1–8 h of exposure and after 48 h of recovery. Additionally, mycosporine-like amino acids (MAAs) and DNA damage were determined. Saturating irradiance of photosynthesis of freshly released tetraspores was 57 µmol photons m−2 s−1. Exposure to increasing fluence of PAR reduced photosynthetic efficiency. UVR further decreased the photosynthetic efficiencies of the tetraspores but spores were able to recover completely after UVR exposure and 2 days post-cultivation under low PAR. DNA damage was minimal and lesions were effectively repaired under photoreactivating light. Concentrations of the MAAs shinorine and palythine were higher in tetraspores treated with UVR than in spores only exposed to PAR. Generally, the tetraspores show a good UV tolerance. This flexible response of the tetraspores of this species to changing radiation conditions enables the alga to grow along a considerable depth gradient from the sublittoral to the eulittoral where they can be exposed to enhanced UVBR under conditions of stratospheric ozone depletion.  相似文献   
4.
Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment.  相似文献   
5.
During summer 2007, Arctic microphytobenthic potential primary production was measured at several stations around the coastline of Kongsfjorden (Svalbard, Norway) at ≤5 m water depth and at two stations at five different water depths (5, 10, 15, 20, 30 m). Oxygen planar optode sensor spots were used ex situ to determine oxygen exchange in the overlying water of intact sediment cores under controlled light (ca. 100 μmol photons m−2 s−1) and temperature (2–4°C) conditions. Patches of microalgae (mainly diatoms) covering sandy sediments at water depths down to 30 m showed high biomass of up to 317 mg chl a m−2. In spite of increasing water depth, no significant trend in “photoautotrophic active biomass” (chl a, ratio living/dead cells, cell sizes) and, thus, in primary production was measured at both stations. All sites from ≤5 to 30 m water depth exhibited variable rates of net production from −19 to +40 mg O2 m−2 h−1 (−168 to +360 mg C m−2 day−1) and gross production of about 2–62 mg O2 m−2 h−1 (17–554 mg C m−2 day−1), which is comparable to other polar as well as temperate regions. No relation between photoautotrophic biomass and gross/net production values was found. Microphytobenthos demonstrated significant rates of primary production that is comparable to pelagic production of Kongsfjorden and, hence, emphasised the importance as C source for the zoobenthos.  相似文献   
6.
The phycobilisomes (PBS), the light-harvesting antennae, from the endemic Antarctic red macroalga Palmaria decipiens were isolated on discontinuous sucrose gradients in two discrete bands and not in one as expected. To exclude methodical faults, we also isolated PBS from the temperate Palmaria palmata and the unicellular red algae Porphyridium cruentum and Rhodella violacea . In P. palmata the PBS were separated in two discrete bands, whereas the PBS from Porphyridium and Rhodella were found in one band. The double-banded PBS (PBSup and PBSlow) from P. decipiens were further characterized by absorption and fluorescence spectroscopy, native and SDS-PAGE as well as by negative staining. The phycobiliproteins RIII-phycoerythrin, RI-phycocyanin and allophycocyanin were identified and 3 γ -subunits were described. The PBSup and PBSlow showed no significant differences in their absorption spectra and phycobiliprotein ratios although the negative stained PBSlow were smaller. Differences were found in their low molecular mass subunit complexes, which are assumed to be r-phycoerythrin. The polypeptide pattern of the PBSup and PBSlow showed no differences in the molecular masses of their subunits and linker polypeptides, but in their percentage distribution. The results suggest that the PBSlow is a closer packed and PBSup a little more loosely aggregated hemiellipsiodal PBS form. We discuss the ecophysiological function of two PBS forms in P. decipiens and suggest advantages in the rapid acclimation to changes in environmental light conditions.  相似文献   
7.
Bischof K  Hanelt D  Wiencke C 《Planta》2000,211(4):555-562
 Changes in physiological parameters related to photosynthesis were studied in five macroalgal species from Spitsbergen (Monostroma arcticum, Laminaria solidungula, Alaria esculenta, Palmaria palmata, Phycodrys rubens) during a 72-h exposure to UV radiation. Maximal quantum yield of photochemistry (Fv/Fm) and maximal electron transport rate (ETRmax) were measured with a pulse-amplitude-modulated fluorometer; the activity of the Calvin cycle enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) were estimated using a photometric test. Proteins of crude extracts were separated by SDS gel electrophoresis and changes in cellular concentrations of Rubisco were determined. Moreover, the concentration of chlorophyll a (Chl a), and protein content, were measured photometrically. In all species, Chl a content, maximal quantum yield as well as ETRmax decreased during the UV treatment. Changes in ETRmax were related to the changes in the overall activity of Rubisco. Analysis of SDS gels showed that in P. rubens, L. solidungula, M. arcticum and A. esculenta decreasing Rubisco activity partly resulted from a degradation of the enzyme. However, in A. esculenta, the formation of a high-molecular-weight polypeptide was observed. In all species, the activity of Rubisco was more strongly impaired than that of G3PDH. Exposure to UV resulted in loss of total protein only in the deepwater species L. solidungula and P. rubens. The different sensitivities to UV exposure of the species tested reflect their zonation pattern in the field. Received: 4 October 1999 / Accepted: 15 February 2000  相似文献   
8.
Exposure of the filamentous turf green alga Urospora penicilliformis to ambient and artificial ultraviolet radiation (UVR) revealed a considerable resilient species. This explains the ability of this alga to thrive in the middle–upper intertidal zones of the Arctic sea where it is periodically exposed to environmental extremes. A transient UVR effect on photosynthesis under photosynthetically active radiation (PAR) + UV-A and PAR + UV-A + UV-B was found, but dynamic recovery of photoinhibition was observed immediately after reduction of the photon fluence rate of PAR in the absence or presence of background UVR under laboratory and natural solar radiation, respectively. Chlorophylls, carotenoids, and xanthophyll cycle pigments (violaxanthin, antheraxanthin, and zeaxanthin) concentrations were not significantly different between freshly collected samples and filaments exposed to additional laboratory radiation treatment. The ultrastructure of the U. penicilliformis gametophytes showed that the cells are well adapted to UVR. No significant ultrastructural alterations were observed in filaments exposed to different spectral irradiance in the laboratory compared to in situ acclimated specimen. The antioxidant α-tocopherol was detected in minute quantity while the search for flavonoid-like compounds was negative. Other UV screening strategies or certain genetically fixed physiological protective mechanism could be operating in this species responsible for their occurrence in higher shoreline and ecological success. Further molecular and biochemical studies are needed to elucidate the stress resistance in this turf alga. There is an indication that the extremely thick cell wall of U. penicilliformis gametophytes covered with mucilage sheath and dense layer of mineral depositions may provide a shield against unfavorable environmental conditions in general and against UVR in particular.  相似文献   
9.
Rising atmospheric CO2‐concentrations will have severe consequences for a variety of biological processes. We investigated the responses of the green alga Ulva lactuca (Linnaeus) to rising CO2‐concentrations in a rockpool scenario. U. lactuca was cultured under aeration with air containing either preindustrial pCO2 (280 μatm) or the pCO2 predicted by the end of the 21st century (700 μatm) for 31 days. We addressed the following question: Will elevated CO2‐concentrations affect photosynthesis (net photosynthesis, maximum relative electron transport rate (rETR(max)), maximum quantum yield (Fv/Fm), pigment composition) and growth of U. lactuca in rockpools with limited water exchange? Two phases of the experiment were distinguished: In the initial phase (day 1–4) the Seawater Carbonate System (SWCS) of the culture medium could be adjusted to the selected atmospheric pCO2 condition by continuous aeration with target pCO2 values. In the second phase (day 4–31) the SWCS was largely determined by the metabolism of the growing U. lactuca biomass. In the initial phase, Fv/Fm and rETR(max) were only slightly elevated at high CO2‐concentrations, whereas growth was significantly enhanced. After 31 days the Chl a content of the thalli was significantly lower under future conditions and the photosynthesis of thalli grown under preindustrial conditions was not dependent on external carbonic anhydrase. Biomass increased significantly at high CO2‐concentrations. At low CO2‐concentrations most adult thalli disintegrated between day 14 and 21, whereas at high CO2‐concentrations most thalli remained integer until day 31. Thallus disintegration at low CO2‐concentrations was mirrored by a drastic decline in seawater dissolved inorganic carbon and HCO3?. Accordingly, the SWCS differed significantly between the treatments. Our results indicated a slight enhancement of photosynthetic performance and significantly elevated growth of U. lactuca at future CO2‐concentrations. The accelerated thallus disintegration at high CO2‐concentrations under conditions of limited water exchange indicates additional CO2 effects on the life cycle of U. lactuca when living in rockpools.  相似文献   
10.
Krossfjorden and Kongsfjorden are Arctic fjords on the western side of Spitsbergen. These fjords share a common mouth to the open sea, and both are influenced by the input of sediment-rich glacial meltwater leading to decreased surface salinity, increased turbidity and decreased light penetration during summer. Earlier classical taxonomic studies had described the pelagic protistan composition of the Kongsfjorden during summer, revealing the dominance of flagellates of often unresolved taxonomic origin. Only little information existed on microbial eukaryote composition of the Krossfjorden as well as the bacterial composition of both fjords. The aim of the present study was to analyze and compare surface summertime protistan and bacterial communities in both fjords, using molecular approaches (16S and 18S rRNA DGGE, sequencing). Samples were collected three times a week from the central Kongsfjorden over a 1-month period. Additionally, 10 marine and 2 freshwater sites were sampled within a 1-week period in both Kongsfjorden and Krossfjorden. The central Kongsfjorden revealed a relatively stable protistan community over time with dinoflagellates, chlorophytes and small heterotrophs dominating. In contrast, the bacterial community varied over time and appeared to be correlated with the inflow of glacial meltwater. The Kongsfjorden and Krossfjorden were found to harbor distinctive bacterial and eukaryotic communities. We speculate that differences in glacial meltwater composition and fjord bathymetry affect the surface water properties and therefore the observed spatial variability in the community fingerprints.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号