首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2017年   2篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
A rapid, selective and sensitive HPLC assay has been developed for the routine analysis of amoxicillin in rat plasma, gastric juice aspirate and gastric tissue which is applicable to low concentrations of amoxicillin (<1 microg mL(-1)) or small sample volumes. Amoxicillin was converted, via an internal rearrangement, to form a fluorescent product which was subsequently recovered using liquid-liquid extraction. A Kromasil ODS 3 microm (150 x 3.2 mm I.D.) column was maintained at 40 degrees C and used with a mobile phase consisting of methanol-water (55:45, v/v). Fluorimetric detection was at an lambda(ex) of 365 nm and an lambda(em) of 445 nm. The limits of quantitation for amoxicillin were 0.1 microg mL(-1) for gastric juice aspirate (500 microL), 0.5 microg mL(-1) for plasma (50 microL) and 0.075 microg g(-1) for gastric tissue (250 mg). The method was linear up to at least 15 microg mL(-1) in gastric juice aspirate, up to 200 microg mL(-1) in plasma and up to 100 microg g(-1) in gastric tissue, with inter- and intra-day RSDs being less than 19%. The assay has been applied to the measurement of amoxicillin in rat plasma, gastric juice aspirate and gastric tissue for pharmacokinetic studies in individual rats.  相似文献   
2.
3.
International Microbiology - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new virus responsible for the COVID-19 pandemic. The emergence of the new SARS-CoV-2 has been...  相似文献   
4.
A rapid, selective and sensitive HPLC assay has been developed for the simultaneous analysis of clarithromycin, its 14-hydroxy-clarithromycin metabolite, and its decladinose acid degradation product, in small volumes of rat gastric juice aspirate, plasma and gastric tissue. Sample were extracted with n-hexane/2-butanol (4:1) and the internal standard was roxithromycin. A Kromasil ODS 5 micrometer(75x4.6 mm I.D.) column was used with a mobile phase consisting of acetonitrile/aqueous phosphate buffer (pH 7, 0.086 M) (45:55 v/v). The column temperature was 30 degrees C and coulometric detection was used at 850 mV using a screen voltage of 600 mV. The analysis time was less than 8 min. The limits of quantitation for clarithromycin, 14-OH clarithromycin and decladinose clarithromycin were 0.15 microgram ml(-1) or lower in plasma (0.05 ml); 0.16 microgram ml(-1) or lower in gastric juice (0.2 ml); and 0.51 microgram g(-1) or lower for gastric tissue (0.25 g). The method was linear up to at least 20.3, 15.4 and 12.5 microgram ml(-1) for clarithromycin, 14-OH-clarithromycin and decladinose, respectively, in gastric juice aspirate and plasma and up to 40.6, 30.9 and 25.0 microgram g(-1) in gastric tissue. The assay was applied to the measurement of clarithromycin, 14-OH-clarithromycin and, for the first time, decladinose clarithromycin in pharmacokinetic studies of gastric transfer of clarithromycin in individual rats.  相似文献   
5.
6.
Renewable‐electricity‐powered electrocatalytic CO2 reduction reactions (CO2RR) have been identified as an emerging technology to address the issue of rising CO2 emissions in the atmosphere. While the CO2RR has been demonstrated to be technically feasible, further improvements in catalyst performance through active sites engineering are a prerequisite to accelerate its commercial feasibility for utilization in large CO2‐emitting industrial sources. Over the years, the improved understanding of the interaction of CO2 with the active sites has allowed superior catalyst design and subsequent attainment of prominent CO2RR activity in literature. This review tracks the evolution of the understanding of CO2RR active sites on different electrocatalysts such as metals, metal‐oxides, single atoms, metal‐carbon, and subsequently metal‐free carbon‐based catalysts. Despite the tremendous research efforts in the field, many scientific questions on the role of various active sites in governing CO2RR activity, selectivity, stability, and pathways are still unanswered. These gaps in knowledge are highlighted and a discussion is set forth on the merits of utilizing advanced in‐situ and operando characterization techniques and machine learning (ML). Using this technique, the underlying mechanisms can be discerned, and as a result new strategies for designing active sites may be uncovered. Finally, this review advocates an interdisciplinary approach to discover and design CO2RR active sites (rather than focusing merely on catalyst activity) in a bid to stimulate practical research for industrial application.  相似文献   
7.
A rapid, selective and sensitive HPLC assay has been developed for the routine analysis of metronidazole in small volumes of rat plasma, gastric aspirate and gastric tissue. The extraction procedure involves liquid–liquid extraction and a protein precipitation step. A microbore Hypersil ODS 3 μm (150×2.1 mm I.D.) column was used with a mobile phase consisting of acetonitrile–aqueous 0.05 M potassium phosphate buffer (pH 7) containing 0.1% triethylamine (10:90). The column temperature was at 25°C and the detection was by UV absorbance at 317 nm. The limit of detection was 0.015 μg ml−1 for gastric juice aspirate and plasma and 0.010 μg g−1 for gastric tissue (equivalent to 0.75 ng on-column). The method was linear up to a concentration of 200 μg ml−1 for plasma and gastric juice aspirate and up to 40 μg g−1 for tissue, with inter- and intra-day relative standard deviations less than 14%. The measured recovery was at least 78% in all sample matrices. The method proved robust and reliable when applied to the measurement of metronidazole in rat plasma, gastric juice aspirate and gastric tissue for pharmacokinetic studies in individual rats.  相似文献   
8.
Background. Amoxicillin and clarithromycin are key antibiotics in proton pump inhibitor‐based Helicobacter pylori eradication therapies. Aims. To study gastric mucus and tissue concentrations and collect basic data about optimal antibacterial doses. Methods. Plasma, gastric mucosa and gastric juice antibiotic concentrations were measured following either low‐ or high‐dose amoxicillin (750 or 1000 mg bid) and clarithromycin (400 or 500 mg bid) given in combination with omeprazole 20 mg bid to 12 male volunteers in an open crossover design. Gastric juice and mucosal biopsy collection was performed either 2 (n = 6) or 6 hours (n = 6) after dosing. Results. Amoxicillin concentrations 2 hours after high dosage were gastric juice > gastric body > antral mucosa > plasma. At 6 hours, plasma and gastric juice concentrations were still above the MIC for amoxicillin‐susceptible bacteria but no antibiotic was detectable in mucosa samples. Clarithromycin concentrations after high dosage were gastric juice > mucosa > serum; all above the MIC for clarithromycin‐susceptible bacteria at both 2 and 6 hours. Conclusions. Both dosage regimens provided effective antibiotic concentrations in gastric juice at 2 hours. After dosing, both antibiotics demonstrated high gastric tissue concentrations via local diffusion while clarithromycin also provided sustained delivery (6 hours) via gastric mucosa penetration.  相似文献   
9.
Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2–8 dpi. Viral ribonucleic acid was detected from 1–15 days post inoculation from the oral route and 1–24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.  相似文献   
10.
Legionella pneumophila is an intracellular pathogen that causes Legionnaire''s disease in humans. This bacterium can be found in freshwater environments as a free‐living organism, but it is also an intracellular parasite of protozoa. Human infection occurs when inhaled aerosolized pathogen comes into contact with the alveolar mucosa and replicates in alveolar macrophages. Legionella enters the host cell by phagocytosis and redirects the Legionella‐containing phagosomes from the phagocytic maturation pathway. These nascent phagosomes fuse with ER‐derived secretory vesicles and membranes forming the Legionella‐containing vacuole. Legionella subverts many host cellular processes by secreting over 300 effector proteins into the host cell via the Dot/Icm type IV secretion system. The cellular function for many Dot/Icm effectors is still unknown. Here, we present a structural and functional study of L. pneumophila effector RavA (Lpg0008). Structural analysis revealed that the RavA consists of four ~85 residue long α‐helical domains with similar folds, which show only a low level of structural similarity to other protein domains. The ~90 residues long C‐terminal segment is predicted to be natively unfolded. We show that during L. pneumophila infection of human cells, RavA localizes to the Golgi apparatus and to the plasma membrane. The same localization is observed when RavA is expressed in human cells. The localization signal resides within the C‐terminal sequence C409WTSFCGLF417. Yeast‐two‐hybrid screen using RavA as bait identified RAB11A as a potential binding partner. RavA is present in L. pneumophila strains but only distant homologs are found in other Legionella species, where the number of repeats varies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号