首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   2篇
  2022年   1篇
  2021年   4篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   9篇
  2011年   7篇
  2010年   8篇
  2009年   6篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有99条查询结果,搜索用时 31 毫秒
1.
The congenitally jaundiced Gunn rat does not conjugate bilirubin but does conjugate bilirubin dimethyl diester. Partial defects in conjugating p-nitrophenol and demethylating aminopyrine are also evident. A proposed mechanism to explain this combination of findings is a defective microsomal membrane. To examine the 'matrix' of Gunn microsomal membranes, hepatic microsomes were isolated from Gunn (jj) and outbred Wistar (JJ) rats and were studied by electron paramagnetic resonance spectroscopy of 7-doxylstearic and 12-doxylstearic acid probes, fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene, glucose-6-phosphatase activity vs. temperature, and lipid analysis. The data indicate several factors related to lipid bilayer order do not differ in microsomes from jj and JJ.  相似文献   
2.
The Drosophila RP3 motor axon establishes a stereotypic arborisation along the adjoining edges of muscles 6 and 7 by the end of embryogenesis. The present study has examined the role of the target muscles in determining this axonal arborisation pattern. Target muscles were surgically ablated prior to the arrival of the RP3 axon. Following further development of the embryo in culture medium, the morphology of target-deprived RP3 motor axons was assayed by intracellular injection with the dye Lucifer Yellow. Axonal arborisations were formed on a variety of non-target muscles when muscles 6 and 7 were removed and these contacts were maintained into stage 16. The pattern of axonal arborisations over non-target muscles varied between preparations in terms of the number of muscles contacted, and the distribution of arborisations on individual muscles. Following removal of muscle 6, the RP3 motor axon frequently contacted muscle 7, and axonal arborisations were present along the distal edge of the muscle. In the absence of muscle 7, the RP3 axon often did not contact muscle 6 and when muscle 6 was contacted, the arborisation of RP3 was poorly developed. Axonal processes were retained on non-target muscles when only one target muscle was present. Therefore, the establishment of a stereotypic arborisation by the RP3 motor axon is apparently dependent on growth cone contact with both target muscles.  相似文献   
3.
4.
Alagille syndrome (AGS) is a clinically defined disorder characterized by cholestatic liver disease with bile duct paucity, peculiar facies, structural heart defects, vertebral anomalies, and ocular abnormalities. Multiple patients with various cytogenetic abnormalities involving 20p12 have been identified, allowing the assignment of AGS to this region. The presence of interstitial deletions of varying size led to the hypothesis that AGS is a contiguous gene deletion syndrome. This molecular analysis of cytogenetically normal AGS patients was performed in order to test this hypothesis and to refine the localization of the known AGS region. Investigation of inheritance of simple tandem repeat polymorphism alleles in 67 members of 24 cytogenetically normal Alagille families led to the identification of a single submicroscopic deletion. The deletion included loci D20S61, D20S41, D20S186, and D20S188 and presumably intervening uninformative loci D20S189 and D20S27. The six deleted loci are contained in a single YAC of 1.9 Mb. The additional finding of multiple unrelated probands who are heterozygous at each locus demonstrates that microdeletions at known loci within the AGS region are rare in cytogenetically normal patients with this disorder. This suggests that the majority of cases of AGS may be the result of a single gene defect rather than a contiguous gene deletion syndrome.  相似文献   
5.
Metathoracic limb buds have been unilaterally ablated from locust embryos at 25 to 30% of embryonic development and the effect of this operation on the axon morphology of the motorneuron fast extensor tibiae (FETi) observed at later embryonic stages. In control embryos this neuron sends a single axon out the main leg nerve, nerve 5, to the extensor tibiae muscle in the femur. In limb ablated embryos the axon of FETi is found in a wide variety of aberrant peripheral nerve pathways and projects to a wide range of foreign muscles. There is a degree of apparent selectivity, but no rigid hierarchy, in the choice of pathway and muscle made by FETi. A high degree of variability is found between one embryo and another in the extent and pattern of axon branching. The axon of FETi is generally found in pathways that correspond to nerves in control embryos but on occasion grows along novel routes. An anteriorly directed dendritic branch, seldom seen in control FETi neurons, is frequently seen in experimental FETis. These findings are discussed in terms of the rules for specific axon growth in normal development.  相似文献   
6.
Volume regulation by flounder red blood cells in anisotonic media   总被引:4,自引:2,他引:2       下载免费PDF全文
The nucleated high K, low Na red blood cells of the winter flounder demonstrated a volume regulatory response subsequent to osmotic swelling or shrinkage. During volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation after osmotic swelling is referred to as regulatory volume decrease (RVD) and was characterized by net K and water loss. Since the electrochemical gradient for K is directed out of the cell there is no need to invoke active processes to explain RVD. When osmotically shrunken, the flounder erythrocyte demonstrated a regulatory volume increase (RVI) back toward control cell volume. The water movements characteristic of RVI were a consequence of net cellular NaCl and KCl uptake with Na accounting for 75 percent of the increase in intracellular cation content. Since the Na electrochemical gradient is directed into the cell, net Na uptake was the result of Na flux via dissipative pathways. The addition of 10(-4)M ouabain to suspensions of flounder erythrocytes was without effect upon net water movements during volume regulation. The presence of ouabain did however lead to a decreased ration of intracellular K:Na. Analysis of net Na and K fluxes in the presence and absence of ouabain led to the conclusion that Na and K fluxes via both conservative and dissipative pathways are increased in response to osmotic swelling or shrinkage. In addition, the Na and K flux rate through both pump and leak pathways decreased in a parallel fashion as cell volume was regulated. Taken as a whole, the Na and K movements through the flounder erythrocyte membrane demonstrated a functional dependence during volume regulation.  相似文献   
7.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
8.
9.
10.
The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly defined. Feeding mice a diet deficient in methionine and choline (MCD diet) induces experimental NASH. Osteopontin (OPN) is a Th1 cytokine that plays an important role in several fibroinflammatory diseases. We examined the role of OPN in the development of experimental NASH. A/J mice were fed MCD or control diet for up to 12 wk, and serum alanine aminotransferase (ALT), liver histology, oxidative stress, and the expressions of OPN, TNF-alpha, and collagen I were assessed at various time points. MCD diet-fed mice developed hepatic steatosis starting after 1 wk and inflammation by 2 wk; serum ALT increased from day 3. Hepatic collagen I mRNA expression increased during 1-4 wk, and fibrosis appeared at 8 wk. OPN protein expression was markedly increased on day 1 of MCD diet and persisted up to 8 wk, whereas OPN mRNA expression was increased at week 4. TNF-alpha expression was increased from day 3 to 2 wk, and evidence of oxidative stress did not appear until 8 wk. Increased expression of OPN was predominantly localized in hepatocytes. Hepatocytes in culture also produced OPN, which was stimulated by transforming growth factor-beta and TNF-alpha. Moreover, MCD diet-induced increases in serum ALT levels, hepatic inflammation, and fibrosis were markedly reduced in OPN(-/-) mice when compared with OPN(+/+) mice. In conclusion, our results demonstrate an upregulation of OPN expression early in the development of steatohepatitis and suggest an important role for OPN in signaling the onset of liver injury and fibrosis in experimental NASH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号