首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   11篇
  2022年   1篇
  2017年   1篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   11篇
  2011年   5篇
  2010年   7篇
  2009年   3篇
  2008年   4篇
  2007年   8篇
  2006年   11篇
  2005年   9篇
  2004年   5篇
  2003年   12篇
  2002年   9篇
  2001年   6篇
  2000年   9篇
  1999年   6篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
1.
Serpin polymerization is the underlying cause of several diseases, including thromboembolism, emphysema, liver cirrhosis, and angioedema. Understanding the structure of the polymers and the mechanism of polymerization is necessary to support rational design of therapeutic agents. Here we show that polymerization of antithrombin is sensitive to the addition of synthetic peptides that interact with the structure. A 12-m34 peptide (homologous to P14-P3 of antithrombin reactive loop), representing the entire length of s4A, prevented polymerization totally. A 6-mer peptide (homologous to P14-P9 of antithrombin) not only allowed polymerization to occur, but induced it. This effect could be blocked by the addition of a 5-mer peptide with s1C sequence of antithrombin or by an unrelated peptide representing residues 26-31 of cholecystokinin. The s1C or cholecystokinin peptide alone was unable to form a complex with native antithrombin. Moreover, an active antitrypsin double mutant, Pro 361-->Cys, Ser 283-->Cys, was engineered for the purpose of forming a disulfide bond between s1C and s2C to prevent movement of s1C. This mutant was resistant to polymerization if the disulfide bridge was intact, but, under reducing conditions, it regained the potential to polymerize. We have also modeled long-chain serpin polymers with acceptable stereochemistry using two previously proposed loop-A-sheet and loop-C-sheet polymerization mechanisms and have shown both to be sterically feasible, as are "mixed" linear polymers. We therefore conclude that the release of strand 1C must be an element of the mechanism of serpin polymerization.  相似文献   
2.
3.
Protein misfolding plays a role in the pathogenesis of many diseases. alpha1-Antitrypsin misfolding leads to the accumulation of long chain polymers within the hepatocyte, reducing its plasma concentration and predisposing the patient to emphysema and liver disease. In order to understand the misfolding process, it is necessary to examine the folding of alpha1-antitrypsin through the different structures involved in this process. In this study we have used a novel technique in which unique cysteine residues were introduced at various positions into alpha1-antitrypsin and fluorescently labeled with N, N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)ethylenediamine. The fluorescence properties of each protein were studied in the native state and as a function of guanidine hydrochloride-mediated unfolding. The studies found that alpha1-antitrypsin unfolded through a series of intermediate structures. From the position of the fluorescence probes, the fluorescence quenching data, and the molecular modeling, we show that unfolding of alpha1-antitrypsin occurs via disruption of the A and C beta-sheets followed by the B beta-sheet. The implications of these data on both alpha1-antitrypsin function and polymerization are discussed.  相似文献   
4.
The shutter region of serpins consists of a number of highly conserved residues that are critical for both stability and function. Several variants of antithrombin with substitutions in this region are unstable and predispose the carrier to thrombosis. Although most mutations in the shutter region investigated to date are deleterious with respect to serpin stability and function, the substitution of Phe51 by Leu in alpha(1)-antitrypsin results in enhanced stability. Here, we have investigated the effects of introducing an analogous mutation into antithrombin (Phe 77 to Leu). The mutation did not affect the kinetics of interaction with proteases. Strikingly, however, the thermostability of the protein was markedly decreased, with the serpin displaying a 13 degrees C decrease in melting temperature as compared to wild-type recombinant antithrombin. Further studies revealed that in contrast to wild-type antithrombin, the mutant adopted the latent (inactive) conformation upon mild heating. Previous studies on shutter region mutations that destabilize antithrombin revealed that such variants possess enhanced affinity for both heparin pentasaccharide and full-length heparin. The N135A/F77L mutant had unchanged affinity for heparin pentasaccharide, but the affinity for full-length heparin was increased. We suggest that the Phe77Leu mutation causes conformational changes around the top of the D-helix in antithrombin, in particular, to the arginine 132 and 133 residues that may mediate additional antithrombin/heparin interactions. This paper also demonstrates that there are major differences between the shutter regions of antithrombin and alpha(1)-antitrypsin since a stabilizing mutation in antitrypsin has the converse effect in antithrombin.  相似文献   
5.
The control of coagulation enzymes by antithrombin is vital for maintenance of normal hemostasis. Antithrombin requires the co-factor, heparin, to efficiently inhibit target proteinases. A specific pentasaccharide sequence (H5) in high affinity heparin induces a conformational change in antithrombin that is particularly important for factor Xa (fXa) inhibition. Thus, synthetic H5 accelerates the interaction between antithrombin and fXa 100-fold as compared with only 2-fold versus thrombin. We built molecular models and identified residues unique to the active site of fXa that we predicted were important for interacting with the reactive center loop of H5-activated antithrombin. To test our predictions, we generated the mutants E37A, E37Q, E39A, E39Q, Q61A, S173A, and F174A in human fXa and examined the rate of association of these mutants with antithrombin in the presence and absence of H5. fXa(Q61A) interacts with antithrombin alone with a nearly normal k(ass); however, we observe only a 4-fold increase in k(ass) in the presence of H5. The x-ray crystal structure of fXa reveals that Gln(61) forms part of the S1' and S3' pocket, suggesting that the P' region of the reactive center loop of antithrombin is crucial for mediating the acceleration in the rate of inhibition of fXa by H5-activated antithrombin.  相似文献   
6.
Inositol polyphosphate 5-phosphatases (5-phosphatase) hydrolyze the 5-position phosphate from the inositol ring of phosphatidylinositol-derived signaling molecules; however, the mechanism of catalysis is only partially characterized. These enzymes play critical roles in regulating cell growth, apoptosis, intracellular calcium oscillations, and post-synaptic vesicular trafficking. The UCLA fold recognition server (threader) predicted that the conserved 300-amino acid catalytic domain, common to all 5-phosphatases, adopts the fold of the apurinic/apyrimidinic (AP) base excision repair endonucleases. PSI-BLAST searches of GENPEPT, using the amino acid sequence of AP endonuclease exonuclease III, identified all members of the 5-phosphatase family with highly significant scores. A sequence alignment between exonuclease III and all known 5-phosphatases revealed six highly conserved motifs containing residues that corresponded to the catalytic residues in the AP endonucleases. Mutation of each of these residues to alanine in the mammalian 43-kDa, or yeast Inp52p 5-phosphatase, resulted in complete loss of enzyme activity. We predict the 5-phosphatase enzymes share a similar mechanism of catalysis to the AP endonucleases, consistent with other common functional similarities such as an absolute requirement for magnesium for activity. Based on this analysis, functional roles have been assigned to conserved residues in all 5-phosphatase enzymes.  相似文献   
7.
The serpins (SERine Proteinase INhibitors) are a family of proteins with important physiological roles, including but not limited to the inhibition of chymotrypsin-like serine proteinases. The inhibitory mechan- ism involves a large conformational change known as the S-->R (stressed-->relaxed) transition. The largest structural differences occur in a region around the scissile bond called the reactive centre loop: In the native (S) state, the reactive centre is exposed, and is free to interact with proteinases. In inhibitory serpins, in the cleaved (R) state the reactive centre loop forms an additional strand within the beta-sheet. The latent state is an uncleaved state in which the intact reactive centre loop is integrated into the A sheet as in the cleaved form, to give an alternative R state.The serpin structures illustrate detailed control of conformation within a single protein. Serpins are also an unusual family of proteins in which homologues have native states with different folding topologies. Determination of the structures of inhibitory serpins in multiple conformational states permits a detailed analysis of the mechanism of the S-->R transition, and of the way in which a single sequence can form two stabilised states of different topology.Here we compare the conformations of alpha(1)-antitrypsin in native and cleaved states. Many protein conformational changes involve relative motions of large rigid subunits. We determine the rigid subunits of alpha(1)-antitrypsin and analyse the changes in their relative position and orientation. Knowing that the conformational change is initiated by cleavage at the reactive centre, we describe a mechanism of the S-->R transition as a logical sequence of mechanical effects, even though the transition likely proceeds in a concerted manner.  相似文献   
8.
The human squamous cell carcinoma antigens (SCCA) 1 and 2 are members of the serpin family that are 92% identical in their amino acid sequence. Despite this similarity, they inhibit distinct classes of proteinases. SCCA1 neutralizes the papain-like cysteine proteinases, cathepsins (cat) S, L, and K; and SCCA2 inhibits the chymotrypsin-like serine proteinases, catG and human mast cell chymase. SCCA2 also can inhibit catS, as well as other papain-like cysteine proteinases, albeit at a rate 50-fold less than that of SCCA1. Analysis of the mechanism of inhibition by SCCA1 revealed that the reactive site loop (RSL) is important for cysteine proteinase inhibition. The inhibition of catS by a mutant SCCA2 containing the RSL of SCCA1 is comparable to that of wild-type SCCA1. This finding suggested that there were no motifs outside and only eight residues within the RSL that were directing catS-specific inhibition. The purpose of this study was to determine which of these residues might account for the marked difference in the ability of SCCA1 and SCCA2 to inhibit papain-like cysteine proteinases. SCCA2 molecules containing different RSL mutations showed that no single amino acid substitution could convert SCCA2 into a more potent cysteine proteinase inhibitor. Rather, different combinations of mutations led to incremental increases in catS inhibitory activity with residues in four positions (P1, P3', P4', and P11') accounting for 80% of the difference in activity between SCCA1 and SCCA2. Interestingly, the RSL cleavage site differed between wild-type SCCA2 and this mutant. Moreover, these data established the importance of a Pro residue in the P3' position for efficient inhibition of catS by both wild-type SCCA1 and mutated SCCA2. Molecular modeling studies suggested that this residue might facilitate positioning of the RSL within the active site of the cysteine proteinase.  相似文献   
9.
Serpins are metastable proteinase inhibitors. Serpin metastability drives both a large conformational change that is utilized during proteinase inhibition and confers an inherent structural flexibility that renders serpins susceptible to aggregation under certain conditions. These include point mutations (the basis of a number of important human genetic diseases), small changes in pH, and an increase in temperature. Many studies of serpins from mesophilic organisms have highlighted an inverse relationship: mutations that confer a marked increase in serpin stability compromise inhibitory activity. Here we present the first biophysical characterization of a metastable serpin from a hyperthermophilic organism. Aeropin, from the archaeon Pyrobaculum aerophilum, is both highly stable and an efficient proteinase inhibitor. We also demonstrate that because of high kinetic barriers, aeropin does not readily form the partially unfolded precursor to serpin aggregation. We conclude that stability and activity are not mutually exclusive properties in the context of the serpin fold, and propose that the increased stability of aeropin is caused by an unfolding pathway that minimizes the formation of an aggregation-prone intermediate ensemble, thereby enabling aeropin to bypass the misfolding fate observed with other serpins.  相似文献   
10.
A balance between proteolytic activity and protease inhibition is crucial to the appropriate function of many biological processes. There is mounting evidence for the presence of both papain-like cysteine proteases and serpins with a corresponding inhibitory activity in the nucleus. Well characterized examples of cofactors fine tuning serpin activity in the extracellular milieu are known, but such modulation has not been studied for protease-serpin interactions within the cell. Accordingly, we present an investigation into the effect of a DNA-rich environment on the interaction between model serpins (MENT and SCCA-1), cysteine proteases (human cathepsin V and human cathepsin L), and cystatin A. DNA was indeed found to accelerate the rate at which MENT inhibited cathepsin V, a human orthologue of mammalian cathepsin L, up to 50-fold, but unexpectedly this effect was primarily effected via the protease and secondarily by the recruitment of the DNA as a "template" onto which cathepsin V and MENT are bound. Notably, the protease-mediated effect was found to correspond both with an altered substrate turnover and a conformational change within the protease. Consistent with this, cystatin inhibition, which relies on occlusion of the active site rather than the substrate-like behavior of serpins, was unaltered by DNA. This represents the first example of modulation of serpin inhibition of cysteine proteases by a co-factor and reveals a mechanism for differential regulation of cathepsin proteolytic activity in a DNA-rich environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号