首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6668篇
  免费   540篇
  国内免费   3篇
  7211篇
  2021年   50篇
  2018年   64篇
  2017年   76篇
  2016年   97篇
  2015年   157篇
  2014年   174篇
  2013年   245篇
  2012年   289篇
  2011年   289篇
  2010年   191篇
  2009年   167篇
  2008年   271篇
  2007年   321篇
  2006年   319篇
  2005年   303篇
  2004年   319篇
  2003年   274篇
  2002年   308篇
  2001年   149篇
  2000年   125篇
  1999年   112篇
  1998年   102篇
  1997年   89篇
  1996年   86篇
  1995年   81篇
  1994年   88篇
  1993年   92篇
  1992年   113篇
  1991年   90篇
  1990年   91篇
  1989年   85篇
  1988年   77篇
  1987年   77篇
  1986年   60篇
  1985年   82篇
  1984年   102篇
  1983年   68篇
  1982年   85篇
  1981年   66篇
  1980年   86篇
  1979年   77篇
  1978年   76篇
  1977年   67篇
  1976年   59篇
  1975年   55篇
  1974年   62篇
  1973年   57篇
  1972年   66篇
  1970年   53篇
  1969年   53篇
排序方式: 共有7211条查询结果,搜索用时 0 毫秒
1.
2.
Abstract: Pharmacologically active agents were employed to study the mechanisms that control the reduction in levels of acetyl-coA: arylamine N-acetyltransferase activity (NAT) (EC 2.3.1.5) in the rat pineal. Pretreatment of rats with phenoxybenzamine or phentolamine prevented the rapid light-mediated decrease in NAT activity, although pretreatment with yohimbine or atropine did not alter this effect of light. Administration of mecamylamine resulted in a rapid reduction in enzyme activity prior to light exposure. When clonidine was administered intraperitoneally to animals with elevated NAT levels, there was a rapid decrease in enzyme activity, mimicking the effects of light. However, intraperitoneal injections of norepinephrine, methoxamine and phenylephrine into similar groups of animals had no significant effect on enzyme acitivity. When clonidine and norepinephrine were administered intraventricularly, there was a rapid reduction in enzyme activity. On the other hand, intraventricular administration of phenylephrine did not result in reduced enzyme activity. Pretreatment of animals with phenoxybenzamine failed to block the reduction in NAT activity precipitated by low doses of clonidine. This clonidine-mediated reduction in enzyme activity was, however, blocked by yohimbine. When animals were simultaneously exposed to light and administered clonidine, the rapid reduction in NAT activity was affected only when animals were pretreated with both yohimbine and phenoxybenzamine. In contrast to the decrease in pineal NAT activity observed in in vivo preparations, incubation of pineals with clonidine in an organ culture system produced a moderate, but consistent, rise in enzyme activity. These results suggest that stimulation of a receptor with α-adrenergic characteristics mediates the reduction in NAT activity produced by light. Stimulation of yet a second adrenergic-like receptor appears to mediate a reduction in pineal NAT activity precipitated by clonidine. Our evidence suggests that one or both of these receptors are located within the central nervous system.  相似文献   
3.
The copper complex of indomethacin (1-(p-chlorobenzoyl)-5-methoxy-2-methyl-indole acetate), a common anti-inflammatory drug, was prepared and characterized. Crystal structure determination revealed the dimeric form of the 1:2 complex, namely Cu2(indomethacin)4 · L2, in the unit cell. Suprisingly, the copper-copper distance (263 pm) was very close to metallic copper (256 pm). The two coordination sites in the copper-copper axis can be readily replaced by superoxide. An intriguing similarity to Cu2(acetate)4 was seen.Due to the lipophilic nature of the indomethacin ligand, this copper complex reacted with superoxide in aprotic solvents. The superoxide dismutating activity was successfully demonstrated in Me2SO/water and acetonitrile/water mixtures using the nitro-blue tetrazolium assay and pulse radiolysis. The second-order rate constant of 6 · 109 M?1 · s?1 in strictly aqueous systems dropped only slightly to 1.1 · 109 M?1 · s?1 when aprotic solvents were used. This is the fastest rate constant ever observed for a copper-dependent dismutation of superoxide. The KO2-induced lipid peroxidation in both erythrocytes and liver microsomes was suppressed by 70% in the presence of 1 · 10?10 mol · ml?1 of Cu2(indomethacin)4. The inhibitory action dropped to 25% when Cu2Zn2superoxide dismutase was employed. The formation of copper · indomethacin in rat serum after administration of indomethacin was shown in vitro and in vivo.  相似文献   
4.
Intestinal cholesterol absorption is specifically inhibited by the 2-azetidinone cholesterol absorption inhibitor ezetimibe. Photoreactive ezetimibe analogues specifically label a 145-kDa protein in the brush border membrane of enterocytes from rabbit small intestine identified as aminopeptidase N (CD13). In zebrafish and mouse small intestinal cytosol, a heterocomplex of Mr 52 kDa between annexin II and caveolin 1 was suggested as a target of ezetimibe. In contrast, in the cytosol and brush border membrane vesicles (BBMV) from rabbit small intestine of control animals or rabbits treated with the nonabsorbable cholesterol absorption inhibitor AVE 5530, both annexin II and caveolin 1 were exclusively present as monomers without any heterocomplex formation. Upon immunoprecipitation with annexin II a 52-kDa band was observed after immunostaining with annexin II antibodies, whereas no staining of a 52-kDa band occurred with anti-caveolin 1 antibodies. Vice versa, a 52-kDa band obtained by immunoprecipitation with caveolin 1 antibodies did not stain with annexin II-antibodies. The intensity of the 52-kDa band was dependent on the amount of antibody and was also observed with anti-actin or anti-APN antibodies suggesting that the 52-kDa band is a biochemical artefact. After incubation of cytosol or BBMV with radioactively labelled ezetimibe analogues, no significant amounts of the ezetimibe analogues could be detected in the immunoprecipitate with caveolin-1 or annexin II antibodies. Photoaffinity labelling of rabbit small intestinal BBMV with ezetimibe analogues did not result in labelling of proteins being immunoreactive with annexin II, caveolin 1 or a 52-kDa heterocomplex. These findings indicate that the rabbit small intestine does not contain an annexin II/caveolin 1 heterocomplex as a target for ezetimibe.  相似文献   
5.
6.
7.
Abstract. The Hexactinellida sponge Aphrocallistes vastus contains a soluble aggregation factor (AF) whose purification has been described in this communication. It is characterized by a S°20.w value of 37 and a buoyant density of 1.45 g/cm3. The AF is a glycoporteinaceous particle composed of three major protein species; no core structure could be visualized. In the presence of Ca2+, the AF causes secondary aggregation of single cells. The aggregation process is temperature, pH, and ionic strength independent within a broad range. Evidence is presented indicating that two (or more) AF molecules are required for the establishment of a stable cell: cell interaction. In contrast to the AFs from demosponges, the hexactinellid AF functions species-unspecifically.  相似文献   
8.
9.
10.
Stbd1 is a protein of previously unknown function that is most prevalent in liver and muscle, the major sites for storage of the energy reserve glycogen. The protein is predicted to contain a hydrophobic N terminus and a C-terminal CBM20 glycan binding domain. Here, we show that Stbd1 binds to glycogen in vitro and that endogenous Stbd1 locates to perinuclear compartments in cultured mouse FL83B or Rat1 cells. When overexpressed in COSM9 cells, Stbd1 concentrated at enlarged perinuclear structures, co-localized with glycogen, the late endosomal/lysosomal marker LAMP1 and the autophagy protein GABARAPL1. Mutant Stbd1 lacking the N-terminal hydrophobic segment had a diffuse distribution throughout the cell. Point mutations in the CBM20 domain did not change the perinuclear localization of Stbd1, but glycogen was no longer concentrated in this compartment. Stable overexpression of glycogen synthase in Rat1WT4 cells resulted in accumulation of glycogen as massive perinuclear deposits, where a large fraction of the detectable Stbd1 co-localized. Starvation of Rat1WT4 cells for glucose resulted in dissipation of the massive glycogen stores into numerous and much smaller glycogen deposits that retained Stbd1. In vitro, in cells, and in animal models, Stbd1 consistently tracked with glycogen. We conclude that Stbd1 is involved in glycogen metabolism by binding to glycogen and anchoring it to membranes, thereby affecting its cellular localization and its intracellular trafficking to lysosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号