首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2021年   1篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The N‐Myc Downstream‐Regulated Gene 4 (NDRG4), a prominent biomarker for colorectal cancer (CRC), is specifically expressed by enteric neurons. Considering that nerves are important members of the tumor microenvironment, we here establish different Ndrg4 knockout (Ndrg4 −/−) CRC models and an indirect co‐culture of primary enteric nervous system (ENS) cells and intestinal organoids to identify whether the ENS, via NDRG4, affects intestinal tumorigenesis. Linking immunostainings and gastrointestinal motility (GI) assays, we show that the absence of Ndrg4 does not trigger any functional or morphological GI abnormalities. However, combining in vivo, in vitro, and quantitative proteomics data, we uncover that Ndrg4 knockdown is associated with enlarged intestinal adenoma development and that organoid growth is boosted by the Ndrg4 −/− ENS cell secretome, which is enriched for Nidogen‐1 (Nid1) and Fibulin‐2 (Fbln2). Moreover, NID1 and FBLN2 are expressed in enteric neurons, enhance migration capacities of CRC cells, and are enriched in human CRC secretomes. Hence, we provide evidence that the ENS, via loss of Ndrg4, is involved in colorectal pathogenesis and that ENS‐derived Nidogen‐1 and Fibulin‐2 enhance colorectal carcinogenesis.  相似文献   
2.
Peripheral serotonin (5-hydrodytryptamine; 5-HT) is involved in the regulation of gastrointestinal motility and sensation, whereas centrally it plays a role in mood regulation. A dysfunctional serotonergic system may provide a plausible link between functional dyspepsia symptoms and its high psychosocial comorbidity such as anxiety and depression. The aim of this study was to evaluate the effect of decreased 5-HT synthesis by acute tryptophan depletion (ATD) on gastric sensorimotor function and nutrient tolerance, anxiety scores, and gastrointestinal mucosal 5-HT concentrations in healthy volunteers. All subjects were studied under a control condition and during ATD. Gastric sensorimotor function and nutrient tolerance were assessed using a barostat (n = 16, mean age 28.8 ± 1.4 yr) and a satiety drinking test (n = 13, mean age 27.3 ± 1.4 yr). Anxiety during the barostat was evaluated using State-Trait Anxiety Inventory (STAI) questionnaire. 5-HT concentrations were measured in fundic and duodenal mucosal biopsies by means of ELISA and immunohistochemistry. ATD significantly decreased plasma tryptophan levels compared with control in every experiment. ATD did not affect gastric sensitivity and compliance but decreased the sensation of nausea during balloon distension (AUC: 17.4 ± 4.3 vs. 11.4 ± 3.4 mm·mmHg, P = 0.030). ATD enhanced the postprandial volume increase (ANOVA, P < 0.05), but this was not accompanied by augmented nutrient tolerance (848 ± 110 vs. 837 ± 99 ml, nonsignificant). ATD had no effect on STAI state anxiety scores. No evidence was found for an effect on the number of enterochromaffin cells, but ATD reduced 5-HT levels in the duodenal mucosa. ATD alters gastric postprandial motor function and distension-induced nausea. These findings confirm involvement of 5-HT in the control of gastric accommodation and sensitivity.  相似文献   
3.
4.
5.

Background and Aims

Recent reports indicate the presence of low grade inflammation in functional gastrointestinal disorders (FGID), in these cases often called “post-inflammatory” FGIDs. However, suitable animal models to study these disorders are not available. The Biobreeding (BB) rat consists of a diabetes-resistant (BBDR) and a diabetes-prone (BBDP) strain. In the diabetes-prone strain, 40–60% of the animals develop diabetes and concomitant nitrergic dysfunction. Our aim was to investigate the occurrence of intestinal inflammation, nitrergic dysfunction and intestinal dysmotility in non-diabetic animals.

Methods

Jejunal inflammation (MPO assay, Hematoxylin&Eosin staining and inducible nitric oxide synthase (iNOS) mRNA expression), in vitro jejunal motility (video analysis) and myenteric neuronal numbers (immunohistochemistry) were assessed in control, normoglycaemic BBDP and diabetic BBDP rats. To study the impact of iNOS inhibition on these parameters, normoglycaemic BBDP rats were treated with aminoguanidine.

Results

Compared to control, significant polymorphonuclear (PMN) cell infiltration, enhanced MPO activity, increased iNOS mRNA expression and a decreased ratio of nNOS to Hu-C/D positive neurons were observed in both normoglycaemic and diabetic BBDP rats. Aminoguanidine treatment decreased PMN infiltration, iNOS mRNA expression and MPO activity. Moreover, it restored the ratio of nNOS to Hu-C/D positive nerves in the myenteric plexus and decreased the abnormal jejunal elongation and dilation observed in normoglycaemic BBDP rats.

Conclusions

Aminoguanidine treatment counteracts the inflammation-induced nitrergic dysfunction and prevents dysmotility, both of which are independent of hyperglycaemia in BB rats. Nitrergic dysfunction may contribute to the pathophysiology of “low-grade inflammatory” FGIDs. Normoglycaemic BBDP rats may be considered a suitable animal model to study the pathogenesis of FGIDs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号