首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   15篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   7篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   2篇
  2010年   8篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   3篇
  1975年   1篇
  1973年   1篇
  1971年   2篇
  1967年   1篇
  1962年   1篇
  1961年   2篇
  1957年   1篇
  1941年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
1.
Kir2.1 channels are uniquely activated by phosphoinositide 4,5-bisphosphate (PI(4,5)P2) and can be inhibited by other phosphoinositides (PIPs). Using biochemical and computational approaches, we assess PIP-channel interactions and distinguish residues that are energetically critical for binding from those that alter PIP sensitivity by shifting the open-closed equilibrium. Intriguingly, binding of each PIP is disrupted by a different subset of mutations. In silico ligand docking indicates that PIPs bind to two sites. The second minor site may correspond to the secondary anionic phospholipid site required for channel activation. However, 96–99% of PIP binding localizes to the first cluster, which corresponds to the general PI(4,5)P2 binding location in recent Kir crystal structures. PIPs can encompass multiple orientations; each di- and triphosphorylated species binds with comparable energies and is favored over monophosphorylated PIPs. The data suggest that selective activation by PI(4,5)P2 involves orientational specificity and that other PIPs inhibit this activation through direct competition.  相似文献   
2.
3.
We present a flexible and cost-efficient synthetic strategy for the preparation of a new family of phosphoramidite and solid-support reagents that can introduce a broad range of modifications into DNA probes. The key intermediate material 3 is synthesized using the inexpensive and commercially available 3-(tert-butyldimethylsiloxy)glutaric anhydride 1 and can be used as common starting material for the preparation of new labeling reagents.  相似文献   
4.

Introduction

The purpose of this study was to evaluate the effects of L-4F, an apolipoprotein A-1 mimetic peptide, alone or with pravastatin, in apoE-/-Fas-/-C57BL/6 mice that spontaneously develop immunoglobulin G (IgG) autoantibodies, glomerulonephritis, osteopenia, and atherosclerotic lesions on a normal chow diet.

Methods

Female mice, starting at eight to nine weeks of age, were treated for 27 weeks with 1) pravastatin, 2) L-4F, 3) L-4F plus pravastatin, or 4) vehicle control, followed by disease phenotype assessment.

Results

In preliminary studies, dysfunctional, proinflammatory high-density lipoproteins (piHDL) were decreased six hours after a single L-4F, but not scrambled L-4F, injection in eight- to nine-week old mice. After 35 weeks, L-4F-treated mice, in the absence/presence of pravastatin, had significantly smaller lymph nodes and glomerular tufts (PL, LP < 0.05), lower serum levels of IgG antibodies to double stranded DNA (dsDNA) (PL < 0.05) and oxidized phospholipids (oxPLs) (PL, LP < 0.005), and elevated total and vertebral bone mineral density (PL, LP < 0.01) compared to vehicle controls. Although all treatment groups presented larger aortic root lesions compared to vehicle controls, enlarged atheromas in combination treatment mice had significantly less infiltrated CD68+ macrophages (PLP < 0.01), significantly increased mean α-actin stained area (PLP < 0.05), and significantly lower levels of circulating markers for atherosclerosis progression, CCL19 (PL, LP < 0.0005) and VCAM-1 (PL < 0.0002).

Conclusions

L-4F treatment, alone or with pravastatin, significantly reduced IgG anti-dsDNA and IgG anti-oxPLs, proteinuria, glomerulonephritis, and osteopenia in a murine lupus model of accelerated atherosclerosis. Despite enlarged aortic lesions, increased smooth muscle content, decreased macrophage infiltration, and decreased pro-atherogenic chemokines in L-4F plus pravastatin treated mice suggest protective mechanisms not only on lupus-like disease, but also on potential plaque remodeling in a murine model of systemic lupus erythematosus (SLE) and accelerated atherosclerosis.  相似文献   
5.
The search for biomarkers to diagnose psychiatric disorders such as schizophrenia has been underway for decades. Many molecular profiling studies in this field have focused on identifying individual marker signals that show significant differences in expression between patients and the normal population. However, signals for multiple analyte combinations that exhibit patterned behaviors have been less exploited. Here, we present a novel approach for identifying biomarkers of schizophrenia using expression of serum analytes from first onset, drug-naïve patients and normal controls. The strength of patterned signals was amplified by analyzing data in reproducing kernel spaces. This resulted in the identification of small sets of analytes referred to as targeted clusters that have discriminative power specifically for schizophrenia in both human and rat models. These clusters were associated with specific molecular signaling pathways and less strongly related to other neuropsychiatric disorders such as major depressive disorder and bipolar disorder. These results shed new light concerning how complex neuropsychiatric diseases behave at the pathway level and demonstrate the power of this approach in identification of disease-specific biomarkers and potential novel therapeutic strategies.Schizophrenia is a debilitating neuropsychiatric disorder that affects more than 1% of the world population and costs hundreds of billions of United States dollars in healthcare provision and lost earnings (1). The diagnosis of this disease has not changed substantially over several decades and currently relies on subjective psychopathological ratings such as the Diagnostic and Statistical Manual of Mental Disorders (DSM)1-IV. Thus, diagnosis can be complicated by the presence of overlapping symptoms frequently occurring in other psychiatric illnesses such as bipolar disorder (BD) and major depressive disorder (MDD) and by the presence of confounding factors such as drug abuse and co-morbidities. This often results in diagnosis being delayed for several months to years. A delay in establishing an accurate diagnosis can have serious deleterious implications because a late or imprecise diagnosis can contribute to unsatisfactory outcomes to currently used drug therapies and to higher rates of relapse (2). Most importantly, more than half of schizophrenia subjects develop a progressive course of the disease associated with deficit symptoms (3).In contrast, early therapeutic intervention holds promise in preventing or diminishing such effects (46). An empirical assay for early and accurate diagnosis of schizophrenia would deliver improved patient outcomes and reduce the costs of the disease for healthcare services and society (79). Such an assay could also provide a means of stratifying patients and monitoring drug responses and may also lead to the development of translational medicine tools that are critical for discovery of novel therapeutic strategies. Molecular profiling methods that afford the simultaneous measurement of multiple analytes in clinical and preclinical samples have considerable promise in this endeavor. These methods have been aimed predominantly at identifying individual molecules that show differences in expression between the disease and control conditions. However, such studies have often been fraught with small fold-changes in analyte levels, a common obstacle when investigating complex neuropsychiatric disorders (1012). Thus, standard statistical techniques such as t tests will not be able to explore patterned behaviors involving proteins that have subtle expression changes but still contribute to the development of schizophrenia.The main objective of this study was to determine whether unique patterns of biomarkers can be identified for subjects with first onset antipsychotic-naïve schizophrenia. Analyte expression lists were generated using the Multi-Analyte Profiling (MAP®) fluorescent bead-based technology for profiling serum samples from 77 male schizophrenia patients and 66 matched male controls. For comparison with other psychiatric disorders, we also analyzed the serum samples of 13 male BD and 17 male MDD patients. In parallel, serum samples from four relevant animal models were also profiled for comparison with the human disease state. Analysis of the respective expression lists was carried out using non-linear statistical analysis, which identifies small sets of analytes called targeted analyte clusters (TACs) that have the power to discriminate the patients from normal controls. We present here the performance of these clusters for diagnosis of schizophrenia. In addition, we show how this method can also contribute to increasing our understanding of the etiology of the disorder by determining its ability to classify various preclinical models of psychiatric disorders. The biological pathways associated with these clusters are discussed with their relevance to schizophrenia.  相似文献   
6.
Gene expression profiling in the adult Down syndrome brain   总被引:4,自引:0,他引:4  
  相似文献   
7.
Internal ribosomal entry sites (IRESs) are structured cis‐acting RNAs that drive an alternative, cap‐independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo‐EM reconstructions of the ribosome 80S‐ and 40S‐bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Å for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P‐site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA‐driven translation initiation.  相似文献   
8.
Structural analyses of the protein-tyrosine phosphatase 1B (PTP1B) active site and inhibitor complexes have aided in optimization of a peptide inhibitor containing the novel (S)-isothiazolidinone (IZD) phosphonate mimetic. Potency and permeability were simultaneously improved by replacing the polar peptidic backbone of the inhibitor with nonpeptidic moieties. The C-terminal primary amide was replaced with a benzimidazole ring, which hydrogen bonds to the carboxylate of Asp(48), and the N terminus of the peptide was replaced with an aryl sulfonamide, which hydrogen bonds to Asp(48) and the backbone NH of Arg(47) via a water molecule. Although both substituents retain the favorable hydrogen bonding network of the peptide scaffold, their aryl rings interact weakly with the protein. The aryl ring of benzimidazole is partially solvent exposed and only participates in van der Waals interactions with Phe(182) of the flap. The aryl ring of aryl sulfonamide adopts an unexpected conformation and only participates in intramolecular pi-stacking interactions with the benzimidazole ring. These results explain the flat SAR for substitutions on both rings and the reason why unsubstituted moieties were selected as candidates. Finally, substituents ortho to the IZD heterocycle on the aryl ring of the IZD-phenyl moiety bind in a small narrow site adjacent to the primary phosphate binding pocket. The crystal structure of an o-chloro derivative reveals that chlorine interacts extensively with residues in the small site. The structural insights that have led to the discovery of potent benzimidazole aryl sulfonamide o-substituted derivatives are discussed in detail.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号