首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   4篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   4篇
  1988年   1篇
  1982年   1篇
  1975年   2篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
Goats and some sheep synthesize a juvenile hemoglobin, Hb C (alpha 2 beta C2), at birth and produce this hemoglobin exclusively during severe anemia. Sheep that synthesize this juvenile hemoglobin are of the A haplotype. Other sheep, belonging to a separate group, the B haplotype, do not synthesize hemoglobin C and during anemia continue to produce their adult hemoglobin. To understand the basis for this difference we have determined the structural organization of the beta- globin locus of B-type sheep by constructing and isolating overlapping genomic clones. These clones have allowed us to establish the linkage map 5' epsilon I-epsilon II-psi beta I-beta B-epsilon III-epsilon IV- psi beta II-beta F3' in this haplotype. Thus, B sheep lack four genes, including the BC gene, and have only eight genes, compared with the 12 found in the goat globin locus. The goat beta-globin locus is as follows: 5' epsilon I-epsilon II-psi beta X-beta C-epsilon III-epsilon IV-psi beta Z-beta A-epsilon V-epsilon VI-psi beta Y-beta F3'. Southern blot analysis of A-type sheep reveals that these animals have a beta- globin locus similar to that of goat, i.e., 12 globin genes. Thus, the beta-globin locus of B-haplotype sheep resembles that of cows and may have retained the duplicated locus of the ancestor of cows and sheep. Alternatively, the B-sheep locus arrangement may be the result of a deletion of a four-gene set from the triplicated locus.   相似文献   
2.
Gold salts and phenylbutazone selectively inhibit the synthesis of PGF and PGE2 respectively. Lowered production of one prostaglandin species is accompanied by an increased production of the other. Selective inhibition by these drugs was observed in the presence of adrenaline, reduced glutathione and copper sulphate under conditions when most anti-inflammatory compounds inhibited PGE2 and PGF syntheses equally. It is postulated that selective inhibitors may have a different mode of action and beneficial effects may be related to the endogenous ratio of PGE to PGF required for normal function.  相似文献   
3.
KJ Wynne  GW Swain  RB Fox  S Bullock  J Uilk 《Biofouling》2013,29(2-4):277-288

Two silicone coatings have been evaluated for barnacle adhesion. One coating is an unfilled hydrosilation cured polydimethylsiloxane (PDMS) network, while the other is a room temperature vulcanized (RTV), filled, ethoxysiloxane cured PDMS elastomer, RTV11?. The adhesion strength of one species of barnacle, Balanus eburneus, to the hydrosilation coatings is in the range of 0.37–0.60 kg cm‐2 while the corresponding range for RTV11 is 0.64–0.90 kg cm‐2. The easier release of B. eburneus from the hydrosilation cured network compared to RTV11 is discussed in relationship to differences in bulk and surface properties. Preliminary results suggest bulk modulus may be the most important parameter in determining barnacle adhesion strength. In light or mechanical property analysis, a re‐evaluation of surface properties and chemical stability is presented.  相似文献   
4.
We hypothesized that: (a) S-nitrosylation of metallothionein (MT) is a component of pulmonary endothelial cell nitric oxide (NO) signaling that is associated with an increase in labile zinc; and (b) NO mediated increases in labile zinc in turn reduce the sensitivity of pulmonary endothelium to LPS-induced apoptosis. We used microspectrofluorometric techniques to show that exposing mouse lung endothelial cells (MLEC) to the NO-donor, S-nitrosocysteine, resulted in a 45% increase in fluorescence of the Zn2+-specific fluorophore, Zinquin, that was rapidly reversed by exposure to the Zn2+ chelator, NNNN-tetrakis-(2-pyridylmethyl)ethylenediamine; TPEN). The absence of a NO-mediated increase in labile Zn2+ in MLEC from MT-I and -II knockout mice inferred a critical role for MT in the regulation of Zn2+ homeostasis by NO. Furthermore, we found that prior exposure of cultured endothelial cells from sheep pulmonary artery (SPAEC), to the NO-donor, S-nitroso-N-acetylpenicillamine (SNAP) reduced their sensitivity to lipopolysaccharide (LPS) induced apoptosis. The anti-apoptotic effects of NO were significantly inhibited by Zn2+ chelation with low doses of TPEN (10 M). Collectively, these data suggest that S-nitrosylation of MT is associated with an increase in labile (TPEN chelatable) zinc and NO-mediated MT dependent zinc release is associated with reduced sensitivity to LPS-induced apoptosis in pulmonary endothelium.  相似文献   
5.
S-nitrosation of the metal binding protein, metallothionein (MT) appears to be a critical link in affecting endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO)-induced changes in cytoplasmic and nuclear labile zinc, respectively. Although low molecular weight S-nitrosothiols also appear to affect this signaling system, less is known about the ability of extracellular protein nitrosothiols to transnitrosate MT. Accordingly, we synthesized fluorescently labeled S-nitroso-albumin (SNO-albumin, a major protein S-nitrosothiol in plasma) and determined, via confocal microscopy in fixed tissue, that it is transported into cultured rat pulmonary vascular endothelial cells in a temperature sensitive fashion. The cells were transfected with an expression vector that encodes human MT-IIa cDNA sandwiched between enhanced cyan (donor) and yellow (acceptor) fluorescent proteins (FRET-MT) that can detect conformational changes in MT through fluorescence resonance energy transfer (FRET). SNO-albumin and the membrane-permeant low molecular weight S-nitroso-l-cysteine ethyl ester (l-SNCEE) caused a conformational change in FRET-MT as ascertained by full spectral laser scanning confocal microscopy in live rat pulmonary vascular endothelial cells, a result which is consistent with transnitrosation of the reporter molecule. Transnitrosation of FRET-MT by SNO-albumin, but not l-SNCEE, was sensitive to antisense oligonucleotide-mediated inhibition of the expression of cell surface protein disulfide isomerase (csPDI). These results extend the original observations of Ramachandran et al. (Ramachandran N, Root P, Jiang XM, Hogg PJ, Mutus B. Proc Natl Acad Sci U S A 98: 9539-9544, 2001) and suggest that csPDI-mediated denitrosation helps to regulate the ability of the major plasma NO carrier (SNO-albumin) to transnitrosate endothelial cell molecular targets (e.g. MT).  相似文献   
6.
Abstract: White-tailed deer (Odocoileus virginianus) are important game mammals and potential reservoirs of diseases of domestic livestock; thus, diseases of deer are of great concern to wildlife managers. Contact, either direct or indirect, is necessary for disease transmission, but we know little about the ecological contexts that promote intrasexual contact among deer. Using pair-wise direct contacts estimated from Global Positioning System collar locations and joint utilization distributions (JUDs), we assessed habitats in which contacts occur to test whether direct contact rates among female white-tailed deer in different social groups differs among land-cover types. We also tested whether contact rates differed among seasons, lunar phases, and times of day. We obtained locations from 27 female deer for periods of 0.5–17 months during 2002–2006. We designated any simultaneous pair of locations for 2 deer <25 m apart as a direct contact. For each season, we used compositional analysis to compare land-cover types where 2 deer had contact to available land-cover weighted by their JUD. We used mixed-model logistic regression to test for effects of season, lunar phase, and time of day on contact rates. Contact rates during the gestation season were greater than expected from random use in forest and grassland cover, whereas contact rates during the fawning period were greater in agricultural fields than in other land-cover types. Contact rates were greatest during the rut and lowest in summer. Diel patterns of contact rates varied with season, and contact rates were elevated during full moon compared to other lunar periods. Both spatial and temporal analyses suggest that contact between female deer in different social groups occurs mainly during feeding, which highlights the potential impact of food distribution and habitat on contact rates among deer. By using methods to associate contacts and land-cover, we have created beneficial tools for more elaborate and detailed studies of disease transmission. Our methods can offer information necessary to develop spatially realistic models of disease transmission in deer.  相似文献   
7.
Protein-tyrosine phosphatase 4A3 (PTP4A3) is highly expressed in multiple human cancers and is hypothesized to have a critical, albeit poorly defined, role in the formation of experimental tumors in mice. PTP4A3 is broadly expressed in many tissues so the cellular basis of its etiological contributions to carcinogenesis may involve both tumor and stromal cells. In particular, PTP4A3 is expressed in the tumor vasculature and has been proposed to be a direct target of vascular endothelial growth factor (VEGF) signaling in endothelial cells. We now provide the first in vivo experimental evidence that PTP4A3 participates in VEGF signaling and contributes to the process of pathological angiogenesis. Colon tumor tissue isolated from Ptp4a3-null mice revealed reduced tumor microvessel density compared with wild type controls. Additionally, vascular cells derived from Ptp4a3-null tissues exhibited decreased invasiveness in an ex vivo wound healing assay. When primary endothelial cells were isolated and cultured in vitro, Ptp4a3-null cells displayed greatly reduced migration compared with wild type cells. Exposure to VEGF led to an increase in Src phosphorylation in wild type endothelial cells, a response that was completely ablated in Ptp4a3-null cells. In loss-of-function studies, reduced VEGF-mediated migration was also observed when human endothelial cells were treated with a small molecule inhibitor of PTP4A3. VEGF-mediated in vivo vascular permeability was significantly attenuated in PTP4A3-deficient mice. These findings strongly support a role for PTP4A3 as an important contributor to endothelial cell function and as a multimodal target for cancer therapy and mitigating VEGF-regulated angiogenesis.  相似文献   
8.
Pannexins (Panxs) are a multifaceted family of ion and metabolite channels that play key roles in a number of physiological and pathophysiological settings. These single membrane large-pore channels exhibit a variety of tissue, cell type, and subcellular distributions. The lifecycles of Panxs are complex, yet must be understood to accurately target these proteins for future therapeutic use. Here we review the basics of Panx function and localization, and then analyze the recent advances in knowledge regarding Panx trafficking. We examine several intrinsic features of Panxs including specific post-translational modifications, the divergent C-termini, and oligomerization, all of which contribute to Panx anterograde transport pathways. Further, we examine the potential influence of extrinsic factors, such as protein-protein interactions, on Panx trafficking. Finally, we highlight what is currently known with respect to Panx internalization and retrograde transport, and present new data illustrating Panx1 internalization following an activating stimulus.  相似文献   
9.

Background  

Adverse drug reactions (ADRs) are now recognized as an important cause of hospital admissions, with a proportion ranging from 0.9–7.9%. They also constitute a significant economic burden. We thus aimed at determining the prevalence and the economic burden of ADRs presenting to Medical Emergency Department (ED) of a tertiary referral center in India  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号