首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   749篇
  免费   38篇
  国内免费   1篇
  2024年   3篇
  2023年   9篇
  2022年   23篇
  2021年   34篇
  2020年   20篇
  2019年   19篇
  2018年   27篇
  2017年   22篇
  2016年   23篇
  2015年   37篇
  2014年   30篇
  2013年   42篇
  2012年   53篇
  2011年   54篇
  2010年   39篇
  2009年   31篇
  2008年   27篇
  2007年   28篇
  2006年   24篇
  2005年   28篇
  2004年   21篇
  2003年   20篇
  2002年   15篇
  2001年   7篇
  2000年   12篇
  1999年   8篇
  1998年   3篇
  1995年   5篇
  1994年   2篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   9篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   6篇
  1982年   2篇
  1979年   5篇
  1978年   2篇
  1977年   8篇
  1975年   8篇
  1974年   6篇
  1973年   4篇
  1972年   6篇
  1971年   5篇
  1970年   6篇
  1969年   6篇
排序方式: 共有788条查询结果,搜索用时 750 毫秒
1.
The differentiation of spermatids in the marmoset (Callithrix jacchus, n = 9) testis is described here at the light-microscopic level employing serial semithin sections. The definition of 8 different phases of spermiogenesis, i.e. the formation of spermatids, is based upon the changes in the development of nucleus, acrosome and flagellum.  相似文献   
2.
As an extension of our previous work we not only evaluated the relationship between acidosis and lipid peroxidation in rat's kidney homogenate, but also determined for the first time the potential anti-oxidant activity of diphenyl diselenide, diphenyl ditelluride and ebselen at a range of pH values (7.4–5.4). Because of the pH dependency of iron redox cycling, pH and iron need to be well controlled and for the reason we tested a number of pH values (from 7.4 to 5.4) to get a closer idea about the role of iron under various pathological conditions. Acidosis increased rate of lipid peroxidation in the absence Fe (II) in kidney homogenates especially at pH 5.4. This higher extent of lipid peroxidation can be explained by; the mobilized iron which may come from reserves where it is weakly bound. Addition of iron (Fe) chelator desferoxamine (DFO) to reaction medium completely inhibited the peroxidation processes at all studied pH values including acidic values (5.8–5.4). In the presence of Fe (II) acidosis also enhanced detrimental effect of Fe (II) especially at pH (6.4–5.4). Diphenyl diselenide significantly protected lipid peroxidation at all studied pH values, while ebselen offered only a small statistically non-significant protection. The highest anti-oxidant potency was observed for diphenyl ditelluride. These differences in potencies were explained by the mode of action of these compounds using their catalytic anti-oxidant cycles. However, changing the pH of the reaction medium did not alter the anti-oxidant activity of the tested compounds. This study provides evidence for acidosis catalyzed oxidative stress in kidney homogenate and for the first time anti-oxidant potential of diphenyl diselenide and diphenyl ditelluride not only at physiological pH but also at a range of acidic values.  相似文献   
3.
Catalytically defective rare variants of Sialic acid Acetyl Esterase (SIAE) have previously been linked to autoimmunity. Studies presented here confirm that the M89V SIAE protein and all other products of common variant alleles of SIAE are catalytically normal. Although overexpressing transfected non-lymphoid cells secrete small amounts of SIAE that can associate with the cell surface, normal human lymphocytes do not exhibit cell surface SIAE, supporting genetic evidence in mice that indicates that this protein functions in a lymphocyte intrinsic manner. Analyses of the plasma proteome also indicate that SIAE is not secreted in vivo. A re-analysis exclusively of catalytically defective rare variant alleles of SIAE in subjects in which this gene was completely sequenced confirmed an association of SIAE with autoimmunity. A subset of catalytically defective rare variant SIAE alleles has previously been typed in a large genotyping study comparing a diverse group of disease subjects and controls; our re-analysis of this data shows that catalytically defective alleles are enriched in disease subjects. These data suggest that SIAE may be associated with autoimmunity and that further study of catalytically defective rare variant SIAE alleles in terms of autoimmune disease susceptibility is strongly warranted.  相似文献   
4.
An insecticidal protein gene from Bacillus thuringiensis var. aizawal was cloned in Escherichia coli. The cloned gene expressed at a high level and the synthesized protein appeared as an insoluble, phase-bright inclusion in the cytoplasm. These inclusions were isolated by density gradient centrifugation, the isolated protein was activated in vitro by different proteloytic regimes and the toxicity of the resulting preparations was studied using insect cells grown in tissue culture. The inclusions consisted of a 130 kDa polypeptide which was processed to a protease-resist-ant 55 kDa protein by tryptic digestion. This preparation lysed lepidopteran (Choristoneura fumiferana) CFI ceils but not dipteran (Aedes albopictus) calls. When the crystal protein was activated by sequential treatment, first with trypsin and then with Aedes aegypti gut proteases, the resulting 53 kDa polypeptide was now toxic only to the dipteran cells and not to the lepidopteran cells. Thus the dual specificity of this var. aizawal toxin results from differential proteolytic processing of a single protoxin. The trypsin-activated preparation was weakly active against Spodoptera frugiperda cells. Membrane binding studies of the trypsin-activated toxin revealed a 68 kDa protein in the lepidopteran ceil membranes, which may be the receptor for this toxin.  相似文献   
5.
N H Waseem  K Labib  P Nurse    D P Lane 《The EMBO journal》1992,11(13):5111-5120
Five monoclonal antibodies raised against rat PCNA cross-reacted with a similar protein in the fission yeast Schizosaccharomyces pombe. One of these was used to screen an S.pombe cDNA expression library. An incomplete cDNA was isolated and used to screen a genomic library, identifying a single gene, designated pcn1+ (proliferating cell nuclear antigen). The gene encodes a protein of 260 amino acids, with a deduced sequence 52% identical to human and rat PCNAs, which are 98.5% identical to each other. The budding yeast PCNA homologue POL30 is only 35% identical to the human and rat proteins. Pcn1 has a region near the C-terminus of particularly high homology to higher eukaryotic PCNA proteins. pcn1+ is essential for viability and delta pcn1 cells undergo aberrant DNA replication before cell cycle arrest. Overproduction of the protein leads to cell cycle delay in G2. Disruption of pcn1+ is complemented by the human PCNA gene, demonstrating that these genes are functional homologues.  相似文献   
6.
Fourteen recombinant plasmids were constructed by inserting fragments of pSAS, a naturally occurring plasmid ofMethylophilus spp. KISRI-5, into the multiple cloning sites of pUC19. Six recombinants and three knownEscherichia coli plasmids were used to transform three thermotolerant methylotrophic KISRI strains by use of an optimized protocol of electroporation. Analysis of transformants for plasmid DNA showed that all plasmids were stable in the methylotrophic hosts. These studies offer opportunities to developMethylophilus spp. as host-vector systems.  相似文献   
7.
Mutagenesis has been used to investigate the toxicity and specificity of a larvicidal protein from Bacillus thuringiensis aizawai IC1 that is toxic to both lepidoptera and diptera and differs by only three residues from a monospecific lepidopteran toxin from B. thuringiensis berliner. Site-directed mutagenesis was used to investigate the contribution of these residues to the dual specificity of the aizawai protein. The results suggest that changes in the identity of residues adjacent to Arg544 and Arg567 on the C-terminal side may convert a monospecific toxin into a dual specificity toxin by altering the protease sensitivity of the arginyl peptide bond. A series of deletion mutants was constructed and their protein products analysed for toxicity in vitro and in vivo and for their ability to perturb phospholipid bilayers. The results indicate a different functional role for various protein segments in the toxin's mode of action and suggest that two separate regions close to the C terminus of the active toxin are important in conferring dual specificity on the aizawai IC1 toxin. A model suggesting a basis for the activity of monospecific and dual-specificity B. thuringiensis toxins is presented, which postulates that association of sequences at the C terminus of the active toxin with regions near the N terminus may be responsible for determining toxin specificity.  相似文献   
8.
9.
The online photoreaction of the rose bengal photosensitized luminol–copper (II) chemiluminescence (CL) system was used for the determination of β-nicotinamide adenine dinucleotide (NADH) and ethanol (EtOH) in pharmaceutical formulations combined with a flow injection technique. NADH can significantly enhance the CL emission of the reaction. For EtOH, alcohol dehydrogenase in soluble form was utilized in the presence of nicotinamide adenine dinucleotide resulting in NADH production. The limit of detection (3σ blank, 𝑛 = 3) of 4.0 × 10−8 and 2.17 × 10−5 M, and linear range 1.3 × 10−7 to 2.5 × 10−5 M (R2 = 0.9998, n = 6) and 0.11–2.17 × 10−3 M (R2 = 0.9996, n = 6) were obtained for NADH and EtOH respectively. The injection rate was 100 h−1 with a relative standard deviation (n = 3) of 1.5–4.8% in the range studied for both analytes. The procedure was satisfactorily applied to pharmaceutical formulations with recoveries in the range 91.6 ± 3.0% to 110 ± 2.0% for NADH and 88 ± 3.0% to 95.4 ± 4.0% for EtOH. The results obtained were very consistent and did not differ considerably from the reported approaches at a 95% confidence limit. The possible mechanism of the CL reaction is also explained briefly.  相似文献   
10.
The current study was designed to evaluate the antioxidant, anticancer and antimicrobial activities of silver nanoparticles (AgNPs) biosynthesized by Spirulina platensis extract. The biosynthesized silver nanoparticles were characterized using Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The antioxidant activity of the biosynthesized AgNPs were determined via DPPH radical scavenging assay while its anticancer activity was determined using the MTT assay. The antimicrobial activity of the biosynthesized AgNPs were analyzed by disc diffusion method. Spirulina platensis acts as a reducing and capping agent. The efficacy of silver nanoparticles (AgNPs) in inhibiting the growth of Gram-negative bacteria, specifically Acetobacter, Klebsiella, Proteus vulgaris, and Pseudomonas aeruginosa, was assessed by the utilisation of the diffusion method. The study aimed to evaluate the efficacy of biosynthesized silver nanoparticles (AgNPs) against many strains of Pseudomonas aeruginosa bacteria. The findings of the study revealed that when administered in doses of 50 μl, 75 μl, and 100 μl, the largest observed zone of inhibition corresponded to measurements of 10.5 mm, 14 mm, and 16 mm, respectively. A zone of inhibition with dimensions of 8 mm, 10.5 mm, and 12 mm was detected during testing against Acetobacter at concentrations of 50 μl, 75 μl, and 100 μl, respectively. The findings also indicate that there is a positive correlation between the concentration of AgNP and the DPPH scavenging ability of silver nanoparticles. The percentage of inhibition observed at concentrations of 500 μg/ml, 400 μg/ml, 300 μg/ml, 200 μg/ml, and 100 μg/ml were recorded as 80±1.98, 61±1.98, 52±1.5, 42±1.99, and 36±1.97, respectively. In addition, it was observed that the silver nanoparticles exhibited the greatest antioxidant activity at a concentration of 500 g/ml, with a measured value of 80.89±1.99. The IC-50 values, representing the inhibitory concentration required to achieve 50 % inhibition, were found to be 8.16, 19.15, 30.14, 41.13, and 63.11 at inhibition levels of 36±1.97, 42±1.99, 52±1.5, 61±1.98, and 80±1.98, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号