首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   12篇
  2020年   3篇
  2019年   6篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   8篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1938年   1篇
  1924年   1篇
排序方式: 共有103条查询结果,搜索用时 46 毫秒
1.
Continuous and batch cultures of marine sulphate-reducing bacteria (SRB) in North Sea water were irradiated with 110000 to 329500 μWs/cm2 of ultraviolet radiation (wavelength 253.7 nm) with a commercial u.v. sterilizing unit. A 100% kill was obtained with logarithmic cultures of Desulfovibrio desulfuricans NCIMB 8400 at population densities of 10–104/ml. A >99.99% kill was obtained with a mixture (ca 105/ml) of batch grown Desulfovibrio spp. and oilfield SRB enrichments. Ultraviolet irradiation was less effective against the indigenous heterotrophic bacteria in the seawater ( ca 90% kill).  相似文献   
2.
Wardell WL  Skoog F 《Plant physiology》1969,44(10):1402-1406
The formation of flowers has been studied in stem tissue excised from flowering plants of Nicotiana tabacum variety Wisconsin No. 38, and cultured in vitro on Murashige and Skoog nutrient medium. A procedure for quantitative evaluation of factors influencing floral expression has been developed and effects of the growth substances, indole-3-acetic acid (IAA), kinetin and gibberellic acid (GA3), on the process are reported.  相似文献   
3.
Wardell WL  Skoog F 《Plant physiology》1969,44(10):1407-1412
The RNA base analogues, 2-thiouracil, 6-azauracil and 8-azaguanine incorporated singly into the medium, increased the number of floral buds in excised stem segments of Nicotiana tabacum variety Wisconsin No. 38 cultured in vitro. Combined treatments with 2 and 3 base analogues were even more effective. The effects were prevented by the corresponding natural counterparts, uracil, uridine, and guanosine respectively. These nucleic acid constituents added to cultures without base analogues did not affect the number of floral buds formed. In stem segments from the lower internodes treatments with the analogues effected a transition from vegetative to floral bud formation, thus in a sense removing the floral gradient as defined by Chouard and Aghion.  相似文献   
4.
The phylogeny of Greya Busck (Lepidoptera: Prodoxidae) was inferred from nucleotide sequence variation across a 765-bp region in the cytochrome oxidase I and II genes of the mitochondrial genome. Most parsimonious relationships of 25 haplotypes from 16 Greya species and two outgroup genera (Tetragma and Prodoxus) showed substantial congruence with the species relationships indicated by morphological variation. Differences between mitochondrial and morphological trees were found primarily in the positions of two species, G. variabilis and G. pectinifera, and in the branching order of the three major species groups in the genus. Conflicts between the data sets were examined by comparing levels of homoplasy in characters supporting alternative hypotheses. The phylogeny of Greya species suggests that host-plant association at the family level and larval feeding mode are conservative characters. Transition/transversion ratios estimated by reconstruction of nucleotide substitutions on the phylogeny had a range of 2.0-9.3, when different subsets of the phylogeny were used. The decline of this ratio with the increase in maximum sequence divergence among taxa indicates that transitions are masked by transversions along deeper internodes or long branches of the phylogeny. Among transitions, substitutions of A-->G and T-->C outnumbered their reciprocal substitutions by 2-6 times, presumably because of the approximately 4:1 (77%) A+T-bias in nucleotide base composition. Of all transversions, 73%-80% were A<-->T substitutions, 85% of which occurred at third positions of codons; these estimates did not decrease with an increase in maximum sequence divergence of taxa included in the analysis. The high frequency of A<-->T substitutions is either a reflection or an explanation of the 92% A+T bias at third codon positions.   相似文献   
5.
The use of partial cubic spline data interpolation for the calculation of volumetric metabolite exchange rates suggested the existence of three distinct metabolic phases during bioreactor culture of a hybridoma cell line. During phase 1, a rapid amino acid uptake rate and ammonia release rate were observed. The growth rate was low and glutamine synthetase activity fell. In phase 2, maximum growth rate and minimum glutamine assimilation and ammonium production rates were observed. Attempts to corroborate the apparent ammonia assimilation in this phase using (15)NH(4)Cl resulted in low incorporation rates into alanine and glutamine. Maximum glutamine synthetase activity took place during this period. Maximum antibody production rate was observed during phase 3 during which peaks in glutamine assimilation, ammonia release, and glutamine synthetase activity were observed. The apparent existence of the three phases prompted us to carry out Northern blot analysis of glutamine synthetase RNA at appropriate times during the process. This revealed a pattern of appearance and dis-appearance of mRNA consistent with the three phases indicated by the fermentation parameters. (c) 1993 John Wiley & Sons, Inc.  相似文献   
6.
Serpin polymerization is the underlying cause of several diseases, including thromboembolism, emphysema, liver cirrhosis, and angioedema. Understanding the structure of the polymers and the mechanism of polymerization is necessary to support rational design of therapeutic agents. Here we show that polymerization of antithrombin is sensitive to the addition of synthetic peptides that interact with the structure. A 12-m34 peptide (homologous to P14-P3 of antithrombin reactive loop), representing the entire length of s4A, prevented polymerization totally. A 6-mer peptide (homologous to P14-P9 of antithrombin) not only allowed polymerization to occur, but induced it. This effect could be blocked by the addition of a 5-mer peptide with s1C sequence of antithrombin or by an unrelated peptide representing residues 26-31 of cholecystokinin. The s1C or cholecystokinin peptide alone was unable to form a complex with native antithrombin. Moreover, an active antitrypsin double mutant, Pro 361-->Cys, Ser 283-->Cys, was engineered for the purpose of forming a disulfide bond between s1C and s2C to prevent movement of s1C. This mutant was resistant to polymerization if the disulfide bridge was intact, but, under reducing conditions, it regained the potential to polymerize. We have also modeled long-chain serpin polymers with acceptable stereochemistry using two previously proposed loop-A-sheet and loop-C-sheet polymerization mechanisms and have shown both to be sterically feasible, as are "mixed" linear polymers. We therefore conclude that the release of strand 1C must be an element of the mechanism of serpin polymerization.  相似文献   
7.
Concerns over the availability of honeybees (Apis mellifera L.) to meet pollination demands have elicited interest in alternative pollinators to mitigate pressures on the commercial beekeeping industry. The blue orchard bee, Osmia lignaria (Say), is a commercially available native bee that can be employed as a copollinator with, or alternative pollinator to, honeybees in orchards. To date, their successful implementation in agriculture has been limited by poor recovery of bee progeny for use during the next spring. This lack of reproductive success may be tied to an inadequate diversity and abundance of alternative floral resources during the foraging period. Managed, supplementary wildflower plantings may promote O. lignaria reproduction in California almond orchards. Three wildflower plantings were installed and maintained along orchard edges to supplement bee forage. Plantings were seeded with native wildflower species that overlapped with and extended beyond almond bloom. We measured bee visitation to planted wildflowers, bee reproduction, and progeny outcomes across orchard blocks at variable distances from wildflower plantings during 2015 and 2016. Pollen provision composition was also determined to confirm O. lignaria wildflower pollen use. Osmia lignaria were frequently observed visiting wildflower plantings during, and after, almond bloom. Most O. lignaria nesting occurred at orchard edges. The greatest recovery of progeny occurred along the orchard edges having the closest proximity (80 m) to managed wildflower plantings versus edges farther away. After almond bloom, O. lignaria nesting closest to the wildflower plantings collected 72% of their pollen from Phacelia spp., which supplied 96% of the managed floral area. Phacelia spp. pollen collection declined with distance from the plantings, but still reached 17% 800 m into the orchard. This study highlights the importance of landscape context and proximity to supplementary floral resources in promoting the propagation of solitary bees as alternative managed pollinators in commercial agriculture.  相似文献   
8.
Mitochondrial DNA (mtDNA) is the only extrachromosomal DNA in human cells. The mitochondrial genome encodes essential information for the synthesis of the mitochondrial respiratory chain. Inherited defects of this genome are an important cause of human disease. In addition, the mitochondrial genome seems to be particularly prone to DNA damage and acquired mutations may have a role in ageing, cancer and neurodegeneration. We wished to determine if radiotherapy and chemotherapy used in the treatment of cancer could induce changes in the mitochondrial genome. Such changes would be an important genetic marker of DNA damage and may explain some of the adverse effects of treatment. We studied samples from patients who had received radiotherapy and chemotherapy for point mutations within the mtDNA control region, and for large-scale deletions. In blood samples from patients, we found a significantly increased number of point mutations compared to the control subjects. In muscle biopsies from 7 of 8 patients whom had received whole body irradiation as well as chemotherapy, the level of a specific mtDNA deletion was significantly greater than in control subjects. Our studies have shown that in patients who have been treated for cancer there is an increased level of mtDNA damage.  相似文献   
9.
Defects of mitochondrial DNA (mtDNA) are an important cause of disease and play a role in the ageing process. There are multiple copies of the mitochondrial genome in a single cell. In many patients with acquired or inherited mtDNA mutations, there exists a mixture of mutated and wild type genomes (termed heteroplasmy) within individual cells. As a biochemical and clinical defect is only observed when there are high levels of mutated mtDNA, a crucial investigation is to determine the level of heteroplasmic mutations within tissues and individual cells. We have developed an assay to determine the relative amount of deleted mtDNA using real-time fluorescence PCR. This assay detects the vast majority of deleted molecules, thus eliminating the need to develop specific probes. We have demonstrated an excellent correlation with other techniques (Southern blotting and three- primer competitive PCR), and have shown this technique to be sensitive to quantify the level of deleted mtDNA molecules in individual cells. Finally, we have used this assay to investigate patients with mitochondrial disease and shown in individual skeletal muscle fibres that there exist different patterns of abnormalities between patients with single or multiple mtDNA deletions. We believe that this technique has significant advantages over other methods to quantify deleted mtDNA and, employed alongside our method to sequence the mitochondrial genome from single cells, will further our understanding of the role of mtDNA mutations in human disease and ageing.  相似文献   
10.
Mutations in mitochondrial DNA (mtDNA) cause a spectrum of human pathologies, which predominantly affect skeletal muscle and the central nervous system. In patients, mutated and wild-type mtDNAs often co-exist in the same cell (mtDNA heteroplasmy). In the absence of pharmacological therapy, a genetic strategy for treatment has been proposed whereby replication of mutated mtDNA is inhibited by selective hybridisation of a nucleic acid derivative to the single-stranded replication intermediate, allowing propagation of the wild-type genome and correction of the associated respiratory chain defect. Previous studies have shown the efficacy of this anti-genomic approach in vitro, targeting pathogenic mtDNA templates with only a single point mutation. Pathogenic molecules harbouring deletions, however, present a more difficult problem. Deletions often occur at the site of two short repeat sequences (4–13 residues), only one of which is retained in the deleted molecule. With the more common larger repeats it is therefore difficult to design an anti-genomic molecule that will bind selectively across the breakpoint of the deleted mtDNA. To address this problem, we have used linker-substituted oligodeoxynucleotides to bridge the repeated residues. We show that molecules can be designed to bind more tightly to the deleted as compared to the wild-type mtDNA template, consistent with the nucleotide sequence on either side of the linker co-operating to increase binding affinity. Furthermore, these bridging molecules are capable of sequence-dependent partial inhibition of replication in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号