首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2012年   2篇
  2011年   5篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
3.
An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes.  相似文献   
4.
Brown planthopper (BPH) is a destructive insect pest of rice and causes severe yield loss. In attempts to develop a BPH-resistant rice variety, Rathu Heenati (RH), a rice cultivar with a strong BPH resistance, has been used as the donor in breeding programs. Quantitative trait loci analysis was conducted for the area under the curve of BPH damage scores of a backcross (BC3F5) population infested by six different BPH populations. Single nucleotide polymorphism (SNP) markers on chromosome 4, i.e., LecRK2-SNP and LecRK3-SNP, and markers on chromosome 6, i.e., Bph32-SNP and SSR23, were identified to be associated with resistance against five BPH populations. To identify genes on chromosome 6 that are involved in BPH resistance, expression analysis was conducted for genes located in the genomic region of Bph32-SNP and SSR23. Genes that showed differential expression ofRH at 24 h after BPH infestation, when compared to an RH control, were identified. Those that encode proteins putatively involved in the BPH resistance mechanism are LOC_Os06g03240, LOC_Os06g03380, LOC_Os06g03486, LOC_Os06g03514, LOC_Os06g03520, LOC_Os06g03610, LOC_Os06g03676, and LOC_Os06g03890. SNP markers were developed from several differentially expressed genes and were validated by genotyping in the backcross population. The SNP marker developed from LOC_Os06g03514 showed the highest association with BPH resistance and the gene may be involved in the BPH resistance mechanism. This SNP marker will be useful in breeding programs for BPH resistance.  相似文献   
5.
Voltage-dependent Ca(2+) channels are heteromultimers of Ca(V)α(1) (pore), Ca(V)β- and Ca(V)α(2)δ-subunits. The stoichiometry of this complex, and whether it is dynamically regulated in intact cells, remains controversial. Fortunately, Ca(V)β-isoforms affect gating differentially, and we chose two extremes (Ca(V)β(1a) and Ca(V)β(2b)) regarding single-channel open probability to address this question. HEK293α(1C) cells expressing the Ca(V)1.2 subunit were transiently transfected with Ca(V)α(2)δ1 alone or with Ca(V)β(1a), Ca(V)β(2b), or (2:1 or 1:1 plasmid ratio) combinations. Both Ca(V)β-subunits increased whole-cell current and shifted the voltage dependence of activation and inactivation to hyperpolarization. Time-dependent inactivation was accelerated by Ca(V)β(1a)-subunits but not by Ca(V)β(2b)-subunits. Mixtures induced intermediate phenotypes. Single channels sometimes switched between periods of low and high open probability. To validate such slow gating behavior, data were segmented in clusters of statistically similar open probability. With Ca(V)β(1a)-subunits alone, channels mostly stayed in clusters (or regimes of alike clusters) of low open probability. Increasing Ca(V)β(2b)-subunits (co-)expressed (1:2, 1:1 ratio or alone) progressively enhanced the frequency and total duration of high open probability clusters and regimes. Our analysis was validated by the inactivation behavior of segmented ensemble averages. Hence, a phenotype consistent with mutually exclusive and dynamically competing binding of different Ca(V)β-subunits is demonstrated in intact cells.  相似文献   
6.
Voltage-dependent Ca2+ channels are heteromultimers of CaVα1 (pore), CaVβ- and CaVα2δ-subunits. The stoichiometry of this complex, and whether it is dynamically regulated in intact cells, remains controversial. Fortunately, CaVβ-isoforms affect gating differentially, and we chose two extremes (CaVβ1a and CaVβ2b) regarding single-channel open probability to address this question. HEK293α1C cells expressing the CaV1.2 subunit were transiently transfected with CaVα2δ1 alone or with CaVβ1a, CaVβ2b, or (2:1 or 1:1 plasmid ratio) combinations. Both CaVβ-subunits increased whole-cell current and shifted the voltage dependence of activation and inactivation to hyperpolarization. Time-dependent inactivation was accelerated by CaVβ1a-subunits but not by CaVβ2b-subunits. Mixtures induced intermediate phenotypes. Single channels sometimes switched between periods of low and high open probability. To validate such slow gating behavior, data were segmented in clusters of statistically similar open probability. With CaVβ1a-subunits alone, channels mostly stayed in clusters (or regimes of alike clusters) of low open probability. Increasing CaVβ2b-subunits (co-)expressed (1:2, 1:1 ratio or alone) progressively enhanced the frequency and total duration of high open probability clusters and regimes. Our analysis was validated by the inactivation behavior of segmented ensemble averages. Hence, a phenotype consistent with mutually exclusive and dynamically competing binding of different CaVβ-subunits is demonstrated in intact cells.  相似文献   
7.
Aromatic rice is an important commodity for international trade, which has encouraged the interest of rice breeders to identify the genetic control of rice aroma. The recessive Os2AP gene, which is located on chromosome 8, has been reported to be associated with rice aroma. The 8-bp deletion in exon 7 is an aromatic allele that is present in most aromatic accessions, including the most popular aromatic rice varieties, Jasmine and Basmati. However, other mutations associated with aroma have been detected, but the other mutations are less frequent. In this study, we report an aromatic allele, a 3-bp insertion in exon 13 of Os2AP, as a major allele found in aromatic rice varieties from Myanmar. The insertion is in frame and causes an additional tyrosine (Y) in the amino acid sequence. However, the mutation does not affect the expression of the Os2AP gene. A functional marker for detecting this allele was developed and tested in an aroma-segregating F(2) population. The aroma phenotypes and genotypes showed perfect co-segregation of this population. The marker was also used for screening a collection of aromatic rice varieties collected from different geographical sites of Myanmar. Twice as many aromatic Myanmar rice varieties containing the 3-bp insertion allele were found as the varieties containing the 8-bp deletion allele, which suggested that the 3-bp insertion allele originated in regions of Myanmar.  相似文献   
8.
9.
The specification of vascular patterning in plants has interested plant biologists for many years. In the last decade a new context has emerged for this interest. Specifically, recent proposals to engineer C4 traits into C3 plants such as rice require an understanding of how the distinctive venation pattern in the leaves of C4 plants is determined. High vein density with Kranz anatomy, whereby photosynthetic cells are arranged in encircling layers around vascular bundles, is one of the major traits that differentiate C4 species from C3 species. To identify genetic factors that specify C4 leaf anatomy, we generated ethyl methanesulfonate‐ and γ‐ray‐mutagenized populations of the C4 species sorghum (Sorghum bicolor), and screened for lines with reduced vein density. Two mutations were identified that conferred low vein density. Both mutations segregated in backcrossed F2 populations as homozygous recessive alleles. Bulk segregant analysis using next‐generation sequencing revealed that, in both cases, the mutant phenotype was associated with mutations in the CYP90D2 gene, which encodes an enzyme in the brassinosteroid biosynthesis pathway. Lack of complementation in allelism tests confirmed this result. These data indicate that the brassinosteroid pathway promotes high vein density in the sorghum leaf, and suggest that differences between C4 and C3 leaf anatomy may arise in part through differential activity of this pathway in the two leaf types.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号