首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9403篇
  免费   1265篇
  国内免费   1篇
  2021年   116篇
  2016年   128篇
  2015年   225篇
  2014年   243篇
  2013年   350篇
  2012年   402篇
  2011年   415篇
  2010年   254篇
  2009年   256篇
  2008年   369篇
  2007年   372篇
  2006年   337篇
  2005年   307篇
  2004年   296篇
  2003年   294篇
  2002年   302篇
  2001年   288篇
  2000年   304篇
  1999年   244篇
  1998年   94篇
  1997年   116篇
  1996年   102篇
  1995年   87篇
  1994年   94篇
  1993年   99篇
  1992年   182篇
  1991年   193篇
  1990年   198篇
  1989年   187篇
  1988年   179篇
  1987年   177篇
  1986年   181篇
  1985年   185篇
  1984年   165篇
  1983年   160篇
  1982年   136篇
  1981年   108篇
  1980年   115篇
  1979年   158篇
  1978年   124篇
  1977年   108篇
  1976年   105篇
  1975年   137篇
  1974年   123篇
  1973年   116篇
  1972年   108篇
  1971年   89篇
  1970年   118篇
  1969年   103篇
  1967年   94篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
1.
Resistance of Plasmodium falciparum to almost all antimalarial drugs, including the first-line treatment with artemisinins, has been described, representing an obvious threat to malaria control. In vitro antimalarial sensitivity testing is crucial to detect and monitor drug resistance. Current assays have been successfully used to detect drug effects on parasites. However, they have some limitations, such as the use of radioactive or expensive reagents or long incubation times. Here we describe a novel assay to detect antimalarial drug effects, based on flow cytometric detection of hemozoin (Hz), which is rapid and does not require any additional reagents. Hz is an optimal parasite maturation indicator since its amount increases as the parasite matures. Due to its physical property of birefringence, Hz depolarizes light, hence it can be detected using optical methods such as flow cytometry. A common flow cytometer was adapted to detect light depolarization caused by Hz. Synchronized in vitro cultures of P. falciparum were incubated for 48 hours with several antimalarial drugs. Analysis of depolarizing events, corresponding to parasitized red blood cells containing Hz, allowed the detection of parasite maturation. Moreover, chloroquine resistance and the inhibitory effect of all antimalarial drugs tested, except for pyrimethamine, could be determined as early as 18 to 24 hours of incubation. At 24 hours incubation, 50% inhibitory concentrations (IC50) were comparable to previously reported values. These results indicate that the reagent-free, real-time Hz detection assay could become a novel assay for the detection of drug effects on Plasmodium falciparum.  相似文献   
2.
3.
4.
Oligomycin sensitivity conferral protein (OSCP), factor 6 (F6), and ATPase inhibitor protein are all components of the ATP synthase complex of bovine mitochondria. They are encoded in nuclear DNA. Complementary DNA clones encoding the precursors of these proteins have been isolated from a bovine library by using mixtures of synthetic oligonucleotides as hybridization probes, and their DNA sequences have been determined. The deduced protein sequences show that the OSCP, F6, and inhibitor proteins have N-terminal presequences of 23, 32, and 25 amino acids, respectively. These presequences are not present in the mature proteins. It is assumed that they serve to direct the proteins into the mitochondrial matrix. The cDNA clones have also been employed as hybridization probes to investigate the genetic complexity of the three proteins in cows and humans. These experiments indicate that the bovine and human inhibitor and bovine F6 proteins are encoded by single genes but suggest the possibility of the presence in both species of more than one gene (or pseudogenes) for the OSCP.  相似文献   
5.
Functional rarefaction: estimating functional diversity from field data   总被引:1,自引:1,他引:0  
Studies in biodiversity-ecosystem function and conservation biology have led to the development of diversity indices that take species' functional differences into account. We identify two broad classes of indices: those that monotonically increase with species richness (MSR indices) and those that weight the contribution of each species by abundance or occurrence (weighted indices). We argue that weighted indices are easier to estimate without bias but tend to ignore information provided by rare species. Conversely, MSR indices fully incorporate information provided by rare species but are nearly always underestimated when communities are not exhaustively surveyed. This is because of the well-studied fact that additional sampling of a community may reveal previously undiscovered species. We use the rarefaction technique from species richness studies to address sample-size-induced bias when estimating functional diversity indices. Rarefaction transforms any given MSR index into a family of unbiased weighted indices, each with a different level of sensitivity to rare species. Thus rarefaction simultaneously solves the problem of bias and the problem of sensitivity to rare species. We present formulae and algorithms for conducting a functional rarefaction analysis of the two most widely cited MSR indices: functional attribute diversity (FAD) and Petchey and Gaston's functional diversity (FD). These formulae also demonstrate a relationship between three seemingly unrelated functional diversity indices: FAD, FD and Rao's quadratic entropy. Statistical theory is also provided in order to prove that all desirable statistical properties of species richness rarefaction are preserved for functional rarefaction.  相似文献   
6.
Experiments were performed on isolated salt-perfused rat lungs to determine the receptor type(s) responsible for the pulmonary vascular effects of the neurohypophyseal peptides arginine vasopressin (AVP) and oxytocin. Bolus administration of AVP to lungs preconstricted with the thromboxane mimetic U-46619 resulted in a dose-dependent vasodilatory response (approximately 65% reversal of U-46619-induced vasoconstriction at the highest dose tested) that was blocked by pretreatment with a selective V1- but not by a selective V2-vasopressinergic receptor antagonist. Administration of a selective V1-agonist to the preconstricted pulmonary vasculature resulted in a vasodilatory response similar to that observed with AVP (approximately 55% reversal of U-46619 vasoconstriction), which was blocked by prior administration of the selective V1-receptor antagonist. Administration of the selective V2-receptor agonist desmopressin to the preconstricted pulmonary vasculature resulted in a small (approximately 8% reversal of U-46619 vasoconstriction) vasodilatory response that was, nevertheless, greater than that produced by addition of vehicle alone and was attenuated by pretreatment with a selective V2-receptor antagonist. Finally, oxytocin also caused vasodilation in the preconstricted pulmonary vasculature; however, the potency of oxytocin was approximately 1% of AVP, and the vasodilation produced by oxytocin was blocked by prior administration of a selective V1-receptor antagonist, suggesting that oxytocin acts via V1-vasopressinergic receptor stimulation. We conclude from these experiments that AVP and oxytocin dilate the preconstricted pulmonary vasculature primarily via stimulation of V1-vasopressinergic receptors. V2-receptor stimulation results in a minor vasodilatory response, although its physiological significance is unclear.  相似文献   
7.
8.
An oligomycin-sensitive F1F0-ATPase isolated from bovine heart mitochondria has been reconstituted into phospholipid vesicles and pumps protons. this preparation of F1F0-ATPase contains 14 different polypeptides that are resolved by polyacrylamide gel electrophoresis under denaturing conditions, and so it is more complex than bacterial and chloroplast enzymes, which have eight or nine different subunits. The 14 bovine subunits have been characterized by protein sequence analysis. They have been fractionated on polyacrylamide gels and transferred to poly(vinylidene difluoride) membranes, and N-terminal sequences have been determined in nine of them. By comparison with known sequences, eight of these have been identified as subunits beta, gamma, delta, and epsilon, which together with the alpha subunit form the F1 domain, as the b and c (or DCCD-reactive) subunits, both components of the membrane sector of the enzyme, and as the oligomycin sensitivity conferral protein (OSCP) and factor 6 (F6), both of which are required for attachment of F1 to the membrane sector. The sequence of the ninth, named subunit e, has been determined and is not related to any reported protein sequence. The N-terminal sequence of a tenth subunit, the membrane component A6L, could be determined after a mild acid treatment to remove an alpha-N-formyl group. Similar experiments with another membrane component, the a or ATPase-6 subunit, caused the protein to degrade, but the protein has been isolated from the enzyme complex and its position on gels has been unambiguously assigned. No N-terminal sequence could be derived from three other proteins. The largest of these is the alpha subunit, which previously has been shown to have pyrrolidonecarboxylic acid at the N terminus of the majority of its chains. The other two have been isolated from the enzyme complex; one of them is the membrane-associated protein, subunit d, which has an alpha-N-acetyl group, and the second, surprisingly, is the ATPase inhibitor protein. When it is isolated directly from mitochondrial membranes, the inhibitor protein has a frayed N terminus, with chains starting at residues 1, 2, and 3, but when it is isolated from the purified enzyme complex, its chains are not frayed and the N terminus is modified. Previously, the sequences at the N terminals of the alpha, beta, and delta subunits isolated from F1-ATPase had been shown to be frayed also, but in the F1F0 complex they each have unique N-terminal sequences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号