首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2019年   4篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
2.
Walck  Jeffrey L.  Baskin  Jerry M.  Baskin  Carol C. 《Plant Ecology》1999,145(1):133-147
Results of field and glasshouse experiments on Solidago shortii, and our observations on this species over many years, were used to construct a conceptual model of the roles of succession, light, soil nutrients and disturbance on population vigor and maintenance of this federal-endangered species. As cover of woody vegetation increased at a population site between 1986 and 1992, number of flowering ramets of S. shortii significantly decreased but number of vegetative ramets remained nearly constant. Adult plants transplanted into a redcedar thicket and those shaded in a glasshouse produced many fewer flowering ramets and capitula per flowering ramet and less biomass and had higher mortality than those in the open. Seedlings/juveniles shaded in a glasshouse had significantly less dry biomass; lower RGR, NAR, leaf area and root/shoot ratio and higher LAR, SLA and LWR than nonshaded ones. In a field site and glasshouse, fertilized plants (NPK) consistently had more flowering ramets and capitula per flowering ramet than nonfertilized ones. Hierarchy of dry weight of plants grown in a glasshouse in soils derived from five types of bedrock was phosphatic limestone > calcareous shale > sandstone > black shale = dolomite. Flowering and biomass production in the field-fertilizer and soil-type experiments were associated closely with levels of P. Number of flowering ramets significantly increased in plants transferred from shaded to nonshaded glasshouse conditions, but no such increase occurred after opening the canopy above plants in a thicket. Both high light and high nutrient levels apparently are necessary to maintain high vigor of S. shortii. In areas subject to invasion by woody plants, periodic high intensity disturbance may be required to prevent population extirpation.  相似文献   
3.
4.
BACKGROUND AND AIMS: The shrub Viburnum tinus is widely distributed in mattoral vegetation of the Mediterranean basin. The purpose of the present study was to classify the seed dormancy type and examine the requirements for embryo growth, root protrusion and shoot emergence. METHODS: Overwintered fruits were collected in western Spain in April 2001 and prepared in three ways: entire pericarp was removed, exocarp and mesocarp were removed or fruits were left intact. Fruits treated in these three ways were subjected to artificial annual temperature cycles or to constant temperature regimes for 1.5 years. KEY RESULTS: Removal of exocarp and mesocarp was necessary for embryo growth and germination. High temperature favoured dormancy alleviation and embryo growth, intermediate to low temperatures favoured root protrusion, and intermediate temperature shoot emergence. There was substantial germination at constant temperature regimes, indicating an overlap between temperature intervals suitable for the different stages of embryo and seedling development. Functionally, V. tinus has the same root and shoot emergence pattern that is described for other Viburnum species considered to have epicotyl dormancy. However, the requirement for high and low temperatures for radicle protrusion and epicotyl emergence, respectively, was missing in V. tinus; these characters are the foundation for the epicotyl dormancy classification. CONCLUSIONS: It is concluded that V. tinus does not have epicotyl dormancy. Instead, there is a combination of a weak morphophysiological dormancy and a slow germination process, where different temperatures during an annual cycle favour different development stages. The present study suggests that the first complete seedlings would emerge in the field 1.5 years after fruit maturation in October, i.e. seed dispersal during winter, embryo growth during the first summer, root protrusion and establishment during the second autumn and winter, and cotyledon emergence during the second spring.  相似文献   
5.
Osmorhiza aristata is an herbaceous perennial that grows primarily in Japan, through southern China, to the Himalayas. It closely resembles the eastern North American species O. claytonii and O. longistylis, and, together, the three species are an example of the well-known North American-Asian pattern of disjunction. Requirements for dormancy break and embryo growth were determined for seeds of O. aristata collected in Japan during the summers of 1998-2000. Embryos in fresh seeds were ca. 0.5 mm long, and they had to grow to 9 mm before the radicle emerged from the mericarp. Embryo growth and germination occurred during cold stratification at 5°C, the optimum temperature for germination. Gibberellic acid did not substitute for cold stratification. Thus, O. aristata seeds have deep complex morphophysiological dormancy (MPD). The type of MPD in O. aristata is similar to that in two western North American congeners but different from that in eastern North American congeners (nondeep complex MPD). Mapping the types of MPD onto a phylogeny of the genus suggests that nondeep complex MPD is derived from deep complex MPD. Although eastern North American-Asian disjuncts often exhibit morphological stasis, the taxa may differ greatly in physiological traits, such as seed dormancy.  相似文献   
6.
Fates and growth of Rafflesia patma buds and insect visitation to the flowers were monitored in an evergreen tropical rain forest in the Pangandaran Nature Reserve, Java, Indonesia, Of 59 buds marked in December 1985, 44 percent died before flowering, 7 percent flowered, and 49 percent were still in bud in May 1986. Mammals and birds caused the deaths of buds before they reached maturity. Only four buds flowered between December 1985 and May 1986; all were male. Rate of increase in diameter (cm/d) was much faster in large than in small buds. Once opening began, the flower opened fully in 24 to 48 hours; the flower remained open for three to five days before rotting. Only two genera of insects visited a male flower of R. patma: Lucilia and Sarcophaga (Diptera). Insect visitation was highest in the afternoon (1300–1700 h) and on the second or third day after flower opening. The increased number of flies visiting the flower coincided with the increasing odor emitted from it. Results of the present study were combined with information from the literature to construct a life cycle diagram of R. patma.  相似文献   
7.

Background and Aims

Simultaneous formation of aerial and soil seed banks by a species provides a mechanism for population maintenance in unpredictable environments. Eolian activity greatly affects growth and regeneration of plants in a sand dune system, but we know little about the difference in the contributions of these two seed banks to population dynamics in sand dunes.

Methods

Seed release, germination, seedling emergence and survival of a desert annual, Agriophyllum squarrosum (Chenopodiaceae), inhabiting the Ordos Sandland in China, were determined in order to explore the different functions of the aerial and soil seed banks.

Key Results

The size of the aerial seed bank was higher than that of the soil seed bank throughout the growing season. Seed release was positively related to wind velocity. Compared with the soil seed bank, seed germination from the aerial seed bank was lower at low temperature (5/15 °C night/day) but higher in the light. Seedling emergence from the soil seed bank was earlier than that from the aerial seed bank. Early-emerged (15 April–15 May) seedlings died due to frost, but seedlings that emerged during the following months survived to reproduce successfully.

Conclusions

The timing of seed release and different germination behaviour resulted in a temporal heterogeneity of seedling emergence and establishment between the two seed banks. The study suggests that a bet-hedging strategy for the two seed banks enables A. squarrosum populations to cope successfully with the unpredictable desert environment.  相似文献   
8.
Rockhouses are semicircular recesses extending far back under cliff overhangs that are large enough to provide shelter for humans. The largest sandstone rockhouses in the eastern United States are at the heads of gorges, and they are in stream valleys cut during the Pleistocene; most are formed in Mississippian and Pennsylvanian-age rocks. Compared to the surrounding environment, the interior of rockhouses is shaded, is warmer during winter and cooler during summer, and has lower evaporation rates and higher humidities. Water enters rockhouses primarily by groundwater seepage and by dripping from the ceiling. Soil consists mostly of sand with low pH, but high levels of some nutrients are associated with saltpeter earth and with ecofactual and artifactual remains left by human occupants during prehistoric time. Most plant taxa in sandstone rockhouses in eastern United States are native C3 phanerophytes or hemicryptophytes, and similarities in species composition among rockhouses are low. Eleven plant taxa belonging to eight families of flowering plants and ferns are endemic or nearly endemic to sandstone rockhouses in eastern United States. Three endemics are restricted to the gorges of a single river, and only one taxon ranges far north of the Wisconsinan Glacial Boundary. The endemic ferns are Tertiary relicts derived from tropical taxa. The majority of endemic flowering plants are derived from temperate taxa that grow in habitats in the vicinity of rockhouses; their relative age ranges from Late Tertiary to the Recent. All the endemic taxa are perennial; two ferns occur as independent gametophytes. The endemic taxa of rockhouses are threatened primarily by disturbances associated with recreation.  相似文献   
9.
Seeds of winter annuals require a summer after-ripening period for dormancy loss and low autumn temperatures for germination. With current and future changes in moisture and temperature, we tested the effects of warming along a relative humidity (RH) gradient on dormancy loss and effects of decreased diurnal temperature range (DTR) on germination. We further reasoned that the effects of changes in these variables would be disproportionate between the exotic and native winter annuals. Seeds of exotic species (Buglossoides arvensis, Lamium purpureum and Ranunculus parviflorus) and co-occurring native species (Galium aparine, Paysonia stonensis and Plantago virginica) were collected in middle Tennessee. After-ripening occurred over a 15–100% RH gradient at 25 and 30°C and germination was tested at 20/10 and 20/15°C. Niche breadth was calculated using Levins' B. Fresh Ranunculus seeds had high germination and those of other species did not. Germination for these species increased with after-ripening, mostly across the RH gradient irrespective of temperature. A decrease in DTR showed mixed results – the extreme being Ranunculus with no germination at 20/15°C. Most exotic species had wider germination niche breadths than native species. With climate change, we suggest that a decrease in DTR may have a larger effect on germination than increasing moisture or warming on dormancy break. Moreover, there is not a clear-cut winner with climate change when we compare exotic versus native species because the responses of our six species were species specific.  相似文献   
10.

Background and Aims

Several ecologically important plant families in Mediterranean biomes have seeds with morphophysiological dormancy (MPD) but have been poorly studied. The aim of this study was to understand the seed ecology of these species by focusing on the prominent, yet intractably dormant Australian genus Hibbertia. It was hypothesized that the slow germination in species of this genus is caused by a requirement for embryo growth inside the seed before germination, and that initiation of embryo growth is reliant upon a complex sequence of environmental cues including seasonal fluctuations in temperature and moisture, and an interplay with light and smoke. Using the results, the classification of the MPD level in species of Hibbertia is considered.

Methods

Four species of Hibbertia in winter rainfall south-western Australia were selected. These species, whilst differing in geographic distributions, are variously sympatric, and all are important understorey components of plant communities. The following aspects related to dormancy break, embryo growth and germination were investigated: temperature and moisture requirements; effects of karrikinolide, gibberellic acid and aerosol smoke; and phenology.

Key Results

Following exposure to wet/dry cycles at low or high temperatures, embryo growth and germination occurred, albeit slowly in all species at low temperatures when moisture was unlimited, corresponding to winter in south-west Australia. Photo regime influenced germination only in H. racemosa. Aerosol smoke triggered substantial germination during the 1st germination season in H. huegelii and H. hypericoides.

Conclusions

Although the study species are con-generic, sympatric and produce seeds of identical morphology, they possessed different dormancy-break and germination requirements. The physiological component of MPD was non-deep in H. racemosa but varied in the other three species where more deeply dormant seeds required >1 summer to overcome dormancy and, thus, germination was spread over time. Embryos grew during winter, but future studies need to resolve the role of cold versus warm stratification by using constant temperature regimes. To include Mediterranean species with MPD, some modifications to the current seed-dormancy classification system may need consideration: (a) wet/dry conditions for warm stratification and (b) a relatively long period for warm stratification. These outcomes have important implications for improving experimental approaches to resolve the effective use of broadcast seed for ecological restoration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号