首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3528篇
  免费   434篇
  国内免费   4篇
  3966篇
  2023年   21篇
  2022年   46篇
  2021年   76篇
  2020年   43篇
  2019年   57篇
  2018年   73篇
  2017年   61篇
  2016年   101篇
  2015年   178篇
  2014年   183篇
  2013年   230篇
  2012年   267篇
  2011年   258篇
  2010年   160篇
  2009年   134篇
  2008年   176篇
  2007年   161篇
  2006年   154篇
  2005年   153篇
  2004年   129篇
  2003年   124篇
  2002年   92篇
  2001年   68篇
  2000年   74篇
  1999年   48篇
  1998年   32篇
  1997年   33篇
  1996年   30篇
  1995年   30篇
  1994年   26篇
  1993年   26篇
  1992年   50篇
  1991年   40篇
  1990年   46篇
  1989年   56篇
  1988年   39篇
  1987年   42篇
  1986年   30篇
  1985年   38篇
  1984年   30篇
  1983年   23篇
  1982年   28篇
  1981年   22篇
  1979年   26篇
  1978年   25篇
  1977年   18篇
  1974年   16篇
  1973年   24篇
  1971年   16篇
  1969年   16篇
排序方式: 共有3966条查询结果,搜索用时 0 毫秒
1.
2.
3.
The BNIP-2 and Cdc42GAP homology (BCH) domain is a novel regulator for Rho GTPases, but its impact on p50-Rho GTPase-activating protein (p50RhoGAP or Cdc42GAP) in cells remains elusive. Here we show that deletion of the BCH domain from p50RhoGAP enhanced its GAP activity and caused drastic cell rounding. Introducing constitutively active RhoA or inactivating GAP domain blocked such effect, whereas replacing the BCH domain with endosome-targeting SNX3 excluded requirement of endosomal localization in regulating the GAP activity. Substitution with homologous BCH domain from Schizosaccharomyces pombe, which does not bind mammalian RhoA, also led to complete loss of suppression. Interestingly, the p50RhoGAP BCH domain only targeted RhoA, but not Cdc42 or Rac1, and it was unable to distinguish between GDP and the GTP-bound form of RhoA. Further mutagenesis revealed a RhoA-binding motif (residues 85-120), which when deleted, significantly reduced BCH inhibition on GAP-mediated cell rounding, whereas its full suppression also required an intramolecular interaction motif (residues 169-197). Therefore, BCH domain serves as a local modulator in cis to sequester RhoA from inactivation by the adjacent GAP domain, adding to a new paradigm for regulating p50RhoGAP signaling.  相似文献   
4.
Specific binding of PapI to Lrp-pap DNA complexes.   总被引:5,自引:2,他引:3       下载免费PDF全文
  相似文献   
5.
Nox4-derived ROS is increased in response to hyperglycemia and is required for IGF-I-stimulated Src activation. This study was undertaken to determine the mechanism by which Nox4 mediates sustained Src activation. IGF-I stimulated sustained Src activation, which occurred primarily on the SHPS-1 scaffold protein. In vitro oxidation experiments indicated that Nox4-derived ROS was able to oxidize Src when they are in close proximity, and Src oxidation leads to its activation. Therefore we hypothesized that Nox4 recruitment to the plasma membrane scaffold SHPS-1 allowed localized ROS generation to mediate sustained Src oxidation and activation. To determine the mechanism of Nox4 recruitment, we analyzed the role of Grb2, a component of the SHPS-1 signaling complex. We determined that Nox4 Tyr-491 was phosphorylated after IGF-I stimulation and was responsible for Nox4 binding to the SH2 domain of Grb2. Overexpression of a Nox4 mutant, Y491F, prevented Nox4/Grb2 association. Importantly, it also prevented Nox4 recruitment to SHPS-1. The role of Grb2 was confirmed using a Pyk2 Y881F mutant, which blocked Grb2 recruitment to SHPS-1. Cells expressing this mutant had impaired Nox4 recruitment to SHPS-1. IGF-I-stimulated downstream signaling and biological actions were also significantly impaired in Nox4 Y491F-overexpressing cells. Disruption of Nox4 recruitment to SHPS-1 in aorta from diabetic mice inhibited IGF-I-stimulated Src oxidation and activation as well as cell proliferation. These findings provide insight into the mechanism by which localized Nox4-derived ROS regulates the sustained activity of a tyrosine kinase that is critical for mediating signal transduction and biological actions.  相似文献   
6.
7.
8.
The soluble subcellular fraction of a chlB mutant contains an inactive precursor form of the molybdoenzyme nitrate reductase, which can be activated by the addition to the soluble fraction of protein FA, which is thought to be the active product of the chlB locus. Dialysis or desalting of the chlB soluble fraction leads to the loss of nitrate reductase activation, indicating that some low-molecular-weight material is required for the activation. The protein FA-dependent activation of nitrate reductase can be restored to the desalted chlB soluble fraction by the addition of a clarified extract obtained after heating the chlB soluble fraction at 100 degrees C for 8 min. The heat-stable substance present in this preparation has a molecular weight of approximately 1,000. This substance is distinct from the active molybdenum cofactor since its activity is unimpaired in heat-treated extracts prepared from the organism grown in the presence of tungstate, which leads to loss of cofactor activity. Mutations at the chlA or chlE locus, which are required for molybdenum cofactor biosynthesis, similarly do not affect the activity of the heat-treated extract in the in vitro activation process. Moreover, the active material can be separated from the molybdenum cofactor activity by gel filtration. None of the other known pleiotropic chlorate resistance loci (chlD, chlG) are required for the expression of its activity. Magnesium ATP appears to have a role in the formation of the active substance. We conclude that a low-molecular-weight substance, distinct from the active molybdenum cofactor, is required to bestow activity on the molybdoenzyme nitrate reductase during its biosynthesis.  相似文献   
9.
Decay-accelerating factor (DAF) is an integral membrane protein that inhibits amplification of the complement cascade on the cell surface. We and other investigators have shown that DAF is part of a newly characterized family of proteins that are anchored to the cell membrane by phosphatidylinositol (PI). The group includes the variant surface glycoprotein (VSG) of African trypanosomes, the p63 protein of Leishmania, acetylcholinesterase (AChE), alkaline phosphatase, Thy-1, 5'-nucleotidase, and RT6.2--an alloantigen from rat T cells. The structure of the membrane anchor has been best characterized for VSG, but chemical studies of the membrane anchors of AChE and Thy-1 suggest that similar glycolipid moieties anchor these proteins to the cell surface. In the VSG, the membrane anchor consists of an ethanolamine linked covalently to an oligosaccharide and glucosamine; the entire complex is anchored to the cell membrane by PI. Immunologically, this glycolipid defines an epitope, the cross-reacting determinant (CRD), that is only revealed after removal of the diacyl glycerol anchor by a phospholipase C. By Western blotting, we show here that DAF-S (DAF released from the membrane by PI-specific phospholipase C [PIPLC]) also contains CRD. Using a newly developed immunoradiometric assay (IRMA) in which the solid-phase capturing antibody is a monoclonal antibody to DAF and the second antibody is anti-CRD, we have been able to quantitate DAF-S. By IRMA, we show that the reaction between anti-CRD and DAF-S is specific, since the binding is competitively inhibited only by the soluble form of the VSG. These observations further support the concept that the glycolipid anchors of this new family of proteins have similar structures. DAF is also found as a soluble protein in various tissue fluids as well as in Hela cell supernatants. No evidence for the presence of the CRD epitope was found on these proteins, suggesting that these forms of DAF are not released from the surface of cells by endogenous phospholipases.  相似文献   
10.
Effects of tissue position (viz. outer vs inner mesocarp) and heat treatment (48°C, 20 min) on variations in polygalacturonase (EC 3.2.1.15 and EC 3.2.1.67) activity and ripening of fruits of Carica papaya L. cv. Backcross Solo were investigated. Polygalacturonase activity increased during ripening concomitantly with an increase in tissue softness and soluble polyuronide level. Throughout ripening, inner mesocarp tissue was softer and contained higher polygalacturonase activity than outer mesocarp tissue. Titratable acidity as well as ß-galactosidase (EC 3.2.1.23) activity also increased during ripening; however, unlike polygalacturonase, their level or activity was lower in inner than in outer mesocarp. Ascorbic acid could partially account for the increase in titratable acidity during ripening but contributed very little to the differences in titratable acid levels between outer and inner mesocarp. Heat treatment had no effect on either fruit softness or titratable acidity, but it markedly reduced the increase in ascorbic acid and polygalacturonase activity during ripening. Ripening, as reflected by changes in tissue softness and polygalacturonase activity, progressed outwardly from the interior towards the exterior of the fruit. The effect of heat treatment in suppressing polygalacturonase activity was relatively greater in inner than in outer mesocarp, suggesting that sensitivity of the enzyme to heat treatment may vary with stage of ripeness of the tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号