首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2016年   2篇
  2015年   2篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2001年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
Background Although alopecia is a commonly recognized problem affecting many captive Rhesus macaque colonies, there is no consensus as to the underlying etiology or appropriate course of management. Methods We performed skin biopsies to assess underlying pathology in alopecic Rhesus macaques and performed immunohistochemical and metachromatic staining of these biopsies to assess the cellular infiltrates. Results Alopecia is associated with superficial dermal perivascular mononuclear cell infiltrates and skin pathology consistent with chronic hypersensitivity dermatitis. The inflammation is primarily composed of CD4+ cells admixed with histiocytes and mast cells. Inflammation is correlated with degree of alopecia. Further analysis in different groups of macaques revealed that animals born outdoors or infected with lung mites had reduced dermal inflammatory cell infiltrates and a lower incidence of alopecia. Conclusions These findings support a hypothesis that an altered housing status resulting in decreased pathogen burden in Rhesus macaque colonies may contribute to dermal immunophenotypic alterations and subsequent development of dermatitis with resultant alopecia.  相似文献   
5.
Since Kaposi''s sarcoma-associated herpesvirus (KSHV or human herpesvirus 8) was first identified in Kaposi''s sarcoma (KS) lesions of HIV-infected individuals with AIDS, the basic biological understanding of KSHV has progressed remarkably. However, the absence of a proper animal model for KSHV continues to impede direct in vivo studies of viral replication, persistence, and pathogenesis. In response to this need for an animal model of KSHV infection, we have explored whether common marmosets can be experimentally infected with human KSHV. Here, we report the successful zoonotic transmission of KSHV into common marmosets (Callithrix jacchus, Cj), a New World primate. Marmosets infected with recombinant KSHV rapidly seroconverted and maintained a vigorous anti-KSHV antibody response. KSHV DNA and latent nuclear antigen (LANA) were readily detected in the peripheral blood mononuclear cells (PBMCs) and various tissues of infected marmosets. Remarkably, one orally infected marmoset developed a KS-like skin lesion with the characteristic infiltration of leukocytes by spindle cells positive for KSHV DNA and proteins. These results demonstrate that human KSHV infects common marmosets, establishes an efficient persistent infection, and occasionally leads to a KS-like skin lesion. This is the first animal model to significantly elaborate the important aspects of KSHV infection in humans and will aid in the future design of vaccines against KSHV and anti-viral therapies targeting KSHV coinfected tumor cells.  相似文献   
6.
High-resolution metabolomics has created opportunity to integrate nutrition and metabolism into genetic studies to improve understanding of the diverse radiation of primate species. At present, however, there is very little information to help guide experimental design for study of wild populations. In a previous non-targeted metabolomics study of common marmosets (Callithrix jacchus), Rhesus macaques, humans, and four non-primate mammalian species, we found that essential amino acids (AA) and other central metabolites had interspecies variation similar to intraspecies variation while non-essential AA, environmental chemicals and catabolic waste products had greater interspecies variation. The present study was designed to test whether 55 plasma metabolites, including both nutritionally essential and non-essential metabolites and catabolic products, differ in concentration in common marmosets and humans. Significant differences were present for more than half of the metabolites analyzed and included AA, vitamins and central lipid metabolites, as well as for catabolic products of AA, nucleotides, energy metabolism and heme. Three environmental chemicals were present at low nanomolar concentrations but did not differ between species. Sex and age differences in marmosets were present for AA and nucleotide metabolism and warrant additional study. Overall, the results suggest that quantitative, targeted metabolomics can provide a useful complement to non-targeted metabolomics for studies of diet and environment interactions in primate evolution.  相似文献   
7.
Studies of gene–environment (G × E) interactions require effective characterization of all environmental exposures from conception to death, termed the exposome. The exposome includes environmental exposures that impact health. Improved metabolic profiling methods are needed to characterize these exposures for use in personalized medicine. In the present study, we compared the analytic capability of dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) to previously used liquid chromatography-FTMS (LC-FTMS) analysis for high-throughput, top-down metabolic profiling. For DC-FTMS, we combined data from sequential LC-FTMS analyses using reverse phase (C18) chromatography and anion exchange (AE) chromatography. Each analysis was performed with electrospray ionization in the positive ion mode and detection from m/z 85 to 850. Run time for each column was 10 min with gradient elution; 10 μl extracts of plasma from humans and common marmosets were used for analysis. In comparison to analysis with the AE column alone, addition of the second LC-FTMS analysis with the C18 column increased m/z feature detection by 23–36%, yielding a total number of features up to 7,000 for individual samples. Approximately 50% of the m/z matched to known chemicals in metabolomic databases, and 23% of the m/z were common to analyses on both columns. Database matches included insecticides, herbicides, flame retardants, and plasticizers. Modularity clustering algorithms applied to MS-data showed the ability to detection clusters and ion interactions. DC-FTMS thus provides improved capability for high-performance metabolic profiling of the exposome and development of personalized medicine.  相似文献   
8.
Mycobacterium tuberculosis infections can result in significant morbidity and mortality in nonhuman primate colonies. Preventative health programs designed to detect infection routinely include tuberculin skin testing (TST). Because Mammalian Old Tuberculin used for TST contains antigens common to a variety of mycobacterial species, false-positive results can occur in animals sensitized to nontuberculous mycobacteria (NTM). Over 11 mo, a large colony of common marmosets (Callithrix jacchus) demonstrated a 3.6% prevalence of equivocal or positive TST reactions (termed 'suspect reactions'). Culture of gastric aspirates, bronchoalveolar lavage fluid, and feces revealed a single animal with a positive fecal culture for Mycobacterium gordonae. PCR amplification of M. gordonae DNA in feces collected from animals with suspect TST reactions (demonstrating a 66.7% colonization rate) and colony controls (demonstrating a 14.3% colonization rate) revealed a significant association between suspect TST reactions and intestinal colonization. Gross and histopathologic evaluation revealed a multifocal lymphadenopathy and granulomatous lymphadenitis in 2 of 4 TST-positive marmosets examined. Counter to expectations, granulomatous lymphoid tissue was culture-positive for M. kansasii rather than M. gordonae. Detection of M. gordonae in the feces of TST-suspect animals likely represents an apathogenic intestinal colonization that may serve as an indicator of NTM exposure, whereas evidence of histopathologic disease is associated with the more pathogenic M. kansasii. Although a high index of suspicion for M. tuberculosis should always be maintained, colonization with NTM organisms represents a cause of suspect TST reactions in common marmosets.  相似文献   
9.
Endometriosis is one of the most frequently encountered gynecologic diseases and a common cause of chronic pelvic pain and infertility. The pathophysiology of this syndrome can best be described as the presence of ectopic endometrium and a pelvic inflammatory process with associated immune dysfunction and alteration in the peritoneal environment. Macrophages play an important role in the progression and propagation of endometriosis. Alternative macrophage activation occurs in rodents and women with endometriosis but had not been examined previously in nonhuman primates. This case–control study aimed to characterize macrophage polarization in the ectopic and eutopic endometrial tissue of nonhuman primates with and without endometriosis. In addition, circulating cytokines in endometriosis cases and normal controls were investigated in an effort to identify serum factors that contribute to or result from macrophage polarization. Endometriosis lesions demonstrated increased infiltration by macrophages polarized toward the M2 phenotype when compared with healthy control endometrium. No serum cytokine trends consistent with alternative macrophage activation were identified. However, serum transforming growth factor α was elevated in macaques with endometriosis compared with healthy controls. Findings indicated that the activation state of macrophages in endometriosis tissue in nonhuman primates is weighted toward the M2 phenotype. This important finding enables rhesus macaques to serve as an animal model to investigate the contribution of macrophage polarization to the pathophysiology of endometriosis.Abbreviations: HLA, human leukocyte antigen; Iba1, ionized calcium binding adaptor molecule 1; M1, classically activated macrophage; M2, alternatively activated macrophage; sCD40L, soluble cluster of differentiation 40 ligand; TGF, transforming growth factor; VEGF, vascular endothelial growth factorEndometriosis is a common cause of chronic pelvic pain and infertility and affects more than 5.5 million women in North America alone.41 Although endometriosis is one of the most frequently encountered gynecologic health problems among women of reproductive age, the pathophysiology of this disease remains elusive due to its complexity and multifactorial etiology. The presence of functional endometrial glands and stroma outside the uterine cavity defines endometriosis. Currently, the most widely accepted theory for the origin of ectopic endometrial tissue is a combined effect of retrograde menstruation and associated implantation of endometrial fragments at an ectopic site. Progression of endometriosis lesions is thought to then be supported by peritoneal factors that allow cell adhesion and growth.44 Although endometriosis is not a neoplastic disease, it exhibits aggressive features such as cellular proliferation, invasion, and vascular proliferation.12 Strong evidence indicates that endometriosis involves a pelvic inflammatory process, with immune dysfunction and alteration in the peritoneal environment.13,27 Numerous studies have demonstrated marked increases in macrophage populations and activity in the peritoneum of endometriosis patients.6,54,59 Although macrophages are integral to homeostasis of the peritoneal environment, during endometriosis they mediate inflammation and facilitate the establishment and maintenance of the disease.Macrophages can be classified into 2 main populations: classically activated macrophages (M1), whose activating stimuli include IFNγ and LPS, and alternatively activated macrophages (M2), whose activating stimuli includes IL4, IL13, IL10, and transforming growth factor (TGF) β.55 These polar phenotypes are not expressed together, but the activation state of tissue macrophages can change over time. This phenotypic switch is possible because macrophages retain plasticity, resulting in macrophage polarization that is transient and reversible.40 A key component in determining the phenotype of the differentially activated macrophage is their response to microenvironmental signals, and this response allows for expression of a spectrum ranging from the M1 to M2 extremes.51 M1- and M2-activated macrophages perform different functions by producing pro- or antiinflammatory factors. M1 macrophages have enhanced endocytic functions and an enhanced ability to kill intracellular pathogens; they also secrete large amounts of proinflammatory cytokines such as IL1α, IL6, IL12, and TNFα.7 In contrast, M2 macrophages are involved in resolution of inflammation and promotion of tissue repair, and they secrete antiinflammatory and immunosuppressive cytokines including IL10 and TGFβ.32 M2 cells also express proangiogenic factors, such as coagulation factor XIII and vascular endothelial growth factor (VEGF) and have been associated with a high degree of vascularization in vivo.1 The pathogenesis of endometriosis is therefore a likely combination of inappropriate or sustained polarization, leading to tissue damage (increased M1 response) and immune dysfunction (increased M2 response) and allowing for persistence of ectopic endometrial tissue.The use of animal models in endometriosis research is crucial. Work done with rodents involves the study of induced disease.53 Despite this caveat, rodent models have been the basis for important contributions. Global macrophage depletion in a rat model of endometriosis effectively inhibits the initiation and growth of endometriosis implants.15 Attenuation of endometriosis has recently also been demonstrated in a mouse model of endometriosis.4 In that study, systemic depletion of macrophages was associated with failure of endometrial lesion development and defective angiogenesis of established lesions. Further evaluation of specific roles of differentially activated macrophages in that study4 showed that adoptive transfer of alternatively activated macrophages (M2) was associated with enhanced endometriosis progression. Conversely, adoptive transfer of inflammatory macrophages (M1) was associated with abrogated progression. In addition to evaluating murine lesions, the authors of the cited study4 investigated markers for alternative macrophage activation in women with endometriosis and matched controls which revealed increased expression of CD163 and CD206 (2 markers of M2 polarized macrophages) in endometriosis lesions as compared with disease-free peritoneum. Although many studies have been published about the pivotal role of macrophages in the pathophysiology of endometriosis, only a few have dealt with activation of the M1 and M2 macrophage phenotypes.4,57 Furthermore, few studies have examined tissue infiltration of macrophages in eutopic endometrium of human subjects with endometriosis.6,23 An exhaustive literature search failed to identify studies that investigate the role of M1 and M2 macrophage populations in eutopic endometrium.The current study uses rhesus macaques, which have been studied extensively in reproductive medicine.58 Because spontaneous development of the disease requires menstrual shedding, endometriosis occurs naturally only in some nonhuman primate species, making development of lesions more comparable to the establishment of disease in humans.14 Compared with rodents, the nonhuman primate model of endometriosis is advantageous due to a close recapitulation of human disease and physiology. Work characterizing M1 and M2 macrophage activation in a species with spontaneous disease development may reflect a closer immunologic characterization to humans. In the current study, macrophage populations were evaluated in archival tissue collected from rhesus macaques with a diagnosis of endometriosis as confirmed by histologic examination. To characterize the phenotype of endometrial tissue macrophages in ectopic endometriosis lesions and eutopic endometrium of both cases and controls, immunohistochemistry was used to quantify cells expressing M1- and M2-specific markers. We hypothesized that endometriosis lesions and eutopic endometrium of rhesus macaques would be associated with a polarized macrophage infiltration consisting of increased numbers of M2 macrophages. This increase in M2 response may cause reduced immune clearance of ectopic endometrial cells, facilitating their implantation and growth. Further we speculated that M2 polarization would be associated with increased serum cytokines including IL10 and VEGF and decreased production of IL6, IL12, and TNFα. The lack of findings that support our hypotheses may suggest that the micro- or peritoneal environment is more important for lesion development or that another component of the systemic milieu is the determining factor in the development of endometriosis.  相似文献   
10.
Opportunistic infections in immunologically compromised nonhuman primates   总被引:1,自引:0,他引:1  
Despite advances in the husbandry of nonhuman primates, natural and experimentally induced diseases continue to pose risks to animal health. These risks are particularly important when such disease results in immunodeficient states that provide an opportunity for the development of opportunistic infections. Because opportunistic agents may serve as significant confounders to research and hold potential for zoonotic transmission, knowledge of disease pathogenesis, surveillance, and risk reduction is particularly important to individuals who work closely with primates. Endogenous diseases of primates that result in blunted immune responses and thus allow for the development of opportunistic infection include simian type D retroviruses and measles. In addition, simian immunodeficiency virus is a frequently studied experimental cause of immunosuppression. This article focuses on clinical and pathological aspects of the most common opportunistic infections that occur in nonhuman primates maintained in research settings. The complete elimination of all infectious agents from primate colonies may be impossible and unwarranted, but microbial surveillance programs can help both to define the complement of agents present in a colony and to elucidate their potential impacts on colony health, zoonotic risk, and experimental research. We discuss risk reduction through the use of quarantine procedures, specific pathogen-free animals, and environmental controls.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号