首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   9篇
  国内免费   23篇
  2023年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   6篇
  2008年   6篇
  2007年   10篇
  2006年   6篇
  2005年   6篇
  2004年   8篇
  2003年   10篇
  2002年   8篇
  2001年   14篇
  2000年   3篇
  1999年   8篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1957年   1篇
排序方式: 共有118条查询结果,搜索用时 885 毫秒
1.
利用胶体金免疫电镜定位技术对蚕豆叶肉细胞中ABA定位的研究表明,在以ABA抗体处理的切片中,叶绿体有大量的金颗粒标记,细胞质和细胞核也有金颗粒标记,但液泡和细胞壁中没有金颗粒标记。免疫染色前用胰蛋白酶处理可显著增强金颗粒标记密度,而不用EDC固定或以免疫前兔血清处理的切片中几乎没有金颗粒标记。本实验为蚕豆叶肉细胞中ABA的分布提供了直接的证据并说明了该技术是研究ABA定位的一种可靠的方法。  相似文献   
2.
以蚕豆叶片下表皮条为材料,研究了微丝在气孔运动中的作用。利用肌动蛋白纤丝专一性抑制剂──细胞松弛素B(CB)预处理后,再用诱导气孔运动的因子处理表皮条,在显微镜下观测气孔孔径的变化。结果显示,用CB处理开放或关闭状态气孔,其开度均不发生变化;CB处理使微丝解聚,气孔运动被抑制;且CB处理后气孔的运动是可以恢复的。实验进一步表明,开放气孔经10mg/L的CB预处理后,ABA、Ca2+及暗诱导气孔关闭的作用均不同程度地受到抑制,推测微丝可能参与ABA、Ca2+及暗诱导的气孔关闭过程;关闭气孔经10mg/L的CB预处理后,K+和(或)光诱导气孔开放的作用受到抑制,推测微丝可能参与光及K+诱导的气孔开放过程。  相似文献   
3.
4.
The Arabidopsis monovalent cation:proton antiporter-1 (CPA1) family includes eight members, AtNHX1-8. AtNHX1 and AtNHX7/SOS1 have been well characterized as tonoplast and plasma membrane Na+/H+ antiporters, respectively. The proteins AtNHX2-6 have been phylogenetically linked to AtNHX1, while AtNHX8 appears to be related to AtNHX7/SOS1. Here we report functional characterization of AtNHX8. AtNHX8 T-DNA insertion mutants are hypersensitive to lithium ions (Li+) relative to wild-type plants, but not to the other metal ions such as sodium (Na+), potassium (K+) and caesium (Cs+). AtNHX8 overexpression in a triple-deletion yeast mutant AXT3 that exhibits defective Na+/Li+ transport specifically suppresses sensitivity to Li+, but does not affect Na+ sensitivity. Likewise, AtNHX8 overexpression complemented sensitivity to Li+, but not Na+, in sos1-1 mutant seedlings, and increased Li+ tolerance of both the sos1-1 mutant and wild-type seedlings. Results of Li+ and K+ measurement of loss-of-function and gain-of-function mutants indicate that AtNHX8 may be responsible for Li+ extrusion, and may be able to maintain K+ acquisition and intracellular ion homeostasis. Subcellular localization of the AtNHX8-enhanced green fluorescent protein (EGFP) fusion protein suggested that AtNHX8 protein is targeted to the plasma membrane. Taken together, our findings suggest that AtNHX8 encodes a putative plasma membrane Li+/H+ antiporter that functions in Li detoxification and ion homeostasis in Arabidopsis.  相似文献   
5.
Arabidopsis mutants produced by constitutive overexpression of the CRISPR/Cas9 genome editing system are usually mosaics in the T1 generation. In this study, we used egg cell-specific promoters to drive the expression of Cas9 and obtained non-mosaic T1 mutants for multiple target genes with high efficiency. Comparisons of 12 combinations of eight promoters and two terminators found that the efficiency of the egg cell-specific promoter-controlled CRISPR/Cas9 system depended on the presence of a suitable terminator, and the composite promoter generated by fusing two egg cell-specific promoters resulted in much higher efficiency of mutation in the T1 generation compared with the single promoters.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0715-0) contains supplementary material, which is available to authorized users.  相似文献   
6.
Stomatal movement is strictly regulated by various intracellular and extracellular factors in response environmental signals. In our recent study, we found that an Arabidopsis guard cell expressed expansin, AtEXPA1, regulates stomatal opening by altering the structure of the guard cell wall. This addendum proposes a mechanism by which guard cell expansins regulate stomatal movement.Key words: expansin, stomatal movement, AtEXPA1, guard cell, wall looseningStomatal movement is the most popular model system for cellular signaling transduction research. A complicated complex containing many proteins has been proposed to control stomatal responses to outside stimuli. The known regulation factors are primarily located in the nucleus, cytoplasm, plasma membrane and other intracellular organelles.1,2 Although the cell wall structure of the stomata is different from that of other cells,3,4 the presence of stomatal movement regulation factors in the cell wall has seldom been reported in reference 5. In our previous work, we found that extracellular calmodulin stimulates a cascade of intracellular signaling events to regulate stomatal movement.6 The involvement of this signaling pathway is the first evidence that cell wall proteins play an important role in regulation of stomatal opening. Cell wall-modifying factors constitute a major portion of cell wall proteins. However, the role of these factors in the regulation of stomatal movement is not yet known.Expansins are nonenzymatic proteins that participate in cell wall loosening.79 Expansins were first identified as “acid-growth” factors because they have much higher activities at acidic pHs.10,11 It has been reported that expansins play important roles in plant cell growth, fruit softening, root hair emergence and other developmental processes in which cell wall loosening is involved.79,12,13 Wall loosening is an essential step in guard cell swelling and the role of stomatal expansins was investigated. AtEXPA1 is an Arabidopsis guard-cell-specific expansin.13,14 Over-expressing AtEXPA1 increases the rate of light-induced stomatal opening,14,15 while a potential inhibitor of expansin activity, AtEXPA1 antibody, reduces the sensitivity of stomata to stimuli.14 We showed that the transpiration rate and the photosynthesis rate in plant lines overexpressing AtEXPA1 were nearly two times the rates for wild-type plants (Fig. 1). These in plant data revealed that expansins accelerated stomatal opening under normal physiological conditions. In addition, the increases in the transpiration and photosynthesis rates strongly suggested the possibility of exploiting expansin-regulated stomatal sensitivity to modify plant drought tolerance. Compared with the effect of hydrolytic cell wall enzymes, the destruction of cell wall structures induced by expansins is minimal. In addition, it is very difficult to directly observe the changes in the guard cell wall structure caused by expansins during stomatal movement. Our recent work showed that, in AtEXPA1-overexpressing plants, the volumetric elastic modulus is lower than in wild-type plants,14 which indicates the wall structure was loosened and that the cell wall was easier to extend. Taken together, our data suggest that expansins participate in the regulation of stomatal movement by modifying the cell walls of guard cells.Open in a separate windowFigure 1Effects of AtEXPA1 overexpression on transpiration rates and photosynthesis rates. The transpiration rate (left) and photosynthesis rate (right) of wild-type and transgenic AtEXPA1 lines were measured at 10:00 AM in the greenhouse after being watered overnight. The illumination intensity was 180 µmol/m2·s. Bars represent the standard error of the mean of at least five plants per line.It is well known that the activation of proton-pumping ATPase (H+-ATPase) in the plasma membrane is an early and essential step in stomatal opening.16 The action of the pump results in an accumulation of H+ outside of the cell, increases the inside-negative electrical potential across the plasma membrane and drives potassium uptake through the voltage-gated, inward-rectifying K+ channels.1719 The main function of the H+ pump is well accepted to create an electrochemical gradient across the plasma membrane; however, the other result is the acidification of the guard cell wall, which may also contribute to stomatal opening. A possible mechanism responsible for this effect is as follows. Expansins are in an inactive state when the stomata are in the resting state. Stomatal opening signals induce wall acidification and activate expansins. Then, the expansins move along with cellulose microfibrils and transiently break down hydrogen bonding between hemicellulose and the surface of cellulose microfibrils,20,21 facilitating the slippage of cell wall polymers under increasing guard cell turgor pressure. The guard cell then swells and the stomata open (Fig. 2).Open in a separate windowFigure 2Model of how guard cell wall expansins regulate stomatal opening. Environmental stimuli, e.g., light, activate guard cell plasma membrane H+-ATPases to pump H+ into the extracellular wall space. The accumulation H+ acidifies the cell wall and induces the activation of expansin. The active expansin disrupts non-covalent bonding between cellulose microfibrils and matrix glucans to enable the slippage of the cell wall. The wall is loosened coincident with guard cell swelling and without substantial breakdown of the structure.Although our results indicate that AtEXPA1 regulates stomatal movement, the biochemical and structural mechanism by which AtEXPA1 loosens the cell wall remains to be discovered. It remains to figure out the existing of other expansins or coordinators involving in this process. In addition, determining the roles of expansins and the guard cell wall in stomatal closing is another main goal of future research.  相似文献   
7.
植物水孔蛋白的亚细胞分布与生理功能研究浅析   总被引:2,自引:0,他引:2  
水孔蛋白(aquaporin,AQP)因具有水转运活性而得名,然而随着研究的深入,水孔蛋白转运活性的多样性与生理功能的多样性不断被报道.本文综合分析了植物水孔蛋白亚细胞定位与功能多样性的研究进展,重点综述了植物水孔蛋白广泛的亚细胞分布特点,以及亚细胞上的再分布现象与植物水孔蛋白生理功能多样性间的关系,并对植物水孔蛋白研究中存在的 问题及研究方向进行了分析,认为水孔蛋白多样化的生理功能的作用机制需要结合其组织定位与亚细胞定位进行分析才能 揭示.  相似文献   
8.
Ca2+/H+ 反向转运体作为一类 Ca2+外向转运器,在植物的营养和信号转导中起着非常重要的作用 . 克隆了水稻 Ca2+/H+ 反向转运体基因 OsCAX3 ,序列分析表明 OsCAX3 具有 11 个跨膜区,其中在第 6 和第 7 个跨膜区之间有一个 17 个氨基酸组成的酸性基序 (acid motif) ,功能互补实验证明 OsCAX3 具有转运 Ca2+ 的功能,并且其 N 端 26 个氨基酸序列对转运 Ca2+ 具有一定的抑制作用 . RT-PCR 分析表明 OsCAX3 的表达受到外源 Ca2+ 的诱导 . 利用 PSORT prediction 进行亚细胞定位分析,和利用 OsCAX3-GFP 融合蛋白瞬时表达分析证明, OsCAX3 定位于细胞质膜 . 以上结果表明, OsCAX3 是一种定位于细胞质膜上的 Ca2+/H+ 反向转运体 .  相似文献   
9.
扩张蛋白(expansin)在细胞扩张和果实成熟中起着极为重要的作用。植物细胞壁伸展测定仪是研究扩张蛋白必不可少的仪器。为此以电涡流传感器为核心部件装配了一种具有结构简单、操作方便和测量准确等优点的新型测定仪,并利用该仪器研究了蚕豆(Vicia faba)扩张蛋白的特性。结果表明蚕豆根、茎、上胚轴和成熟叶片中均存在扩张蛋白,而且叶片和幼根的扩张蛋白活性最强;免疫印迹证实在蚕豆根、茎、上胚轴和成熟叶片中确实存在扩张蛋白。以上结果说明本仪器灵敏且可靠,用此仪器首次发现在成熟叶片中存在扩张蛋白。  相似文献   
10.
磷酸丙糖转运器(triosephosphate/phosphatetranslocator,TPT)是源、库间光合产物分配的第一调控部位,研究TPT的特性及其对同化物分配的调节,对于提高光合作用同化物利用效率有着重要意义。我们首先采用Percoll密度梯度离心从小麦(TriticumaestivumL.)叶片中分离制备了完整性达91%以上、具有较高纯度的完整叶绿体。利用TPT不可逆抑制剂[H3]2-DIDS标记和SDS-PAGE,以及小麦TPT抗体进行Westernblotting分析,证明TPT蛋白仅存在于叶绿体被膜中,约占被膜总蛋白的15%,其分子量为35kD,而在液泡膜和线粒体膜上不存在。采用硅油离心法研究TPT对磷酸二羟丙酮(dihydroxyacetonephosphate,DHAP)、磷酸烯醇式丙酮酸(phosphoenolpyruvate,PEP)、葡萄糖-6-磷酸(glucose-6-phosphate,G6P)与Pi的反向运输动力学的结果表明,DHAP/Pi的最大运输活性最高,PEP/Pi次之,G6P/Pi最低。TPT与这些运输底物的Km值由小至大,分别为DHAP、Pi、PEP和G6P,证明TPT的最适运输底物为DHAP。用DIDS处理时,TPT对DHAP运输活性的抑制达95%。TPT运输活性受到抑制时,可导致叶绿体内大量积累淀粉。TPT在调控小麦叶绿体同化产物的分配中起着重要作用,在保证卡尔文循环正常运转的前提下,通过TPT外运到胞质中参与蔗糖合成和其他代谢活动的磷酸丙糖(triosep  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号