首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   14篇
  2022年   4篇
  2021年   8篇
  2020年   7篇
  2019年   4篇
  2018年   8篇
  2017年   2篇
  2016年   14篇
  2015年   10篇
  2014年   13篇
  2013年   21篇
  2012年   25篇
  2011年   42篇
  2010年   19篇
  2009年   17篇
  2008年   16篇
  2007年   18篇
  2006年   15篇
  2005年   17篇
  2004年   14篇
  2003年   16篇
  2002年   15篇
  2001年   3篇
  2000年   8篇
  1999年   9篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   10篇
  1991年   8篇
  1990年   2篇
  1989年   6篇
  1988年   4篇
  1987年   7篇
  1986年   2篇
  1985年   7篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   3篇
  1970年   1篇
排序方式: 共有401条查询结果,搜索用时 15 毫秒
1.
Cyclic adenosine monophosphate and cyclic guanosine monophosphate occupy one of the central places in the neuro-endocrine regulation in the highest organisms. These nucleotides mediate the effect of most hormones and neurotransmitters: peptide, polypeptide and proteinaceous, catecholamine, histamine, many prostaglandins, acetylcholine (in the case of muscarinic cholinergic receptor activation), endorphins and enkephalins. They regulate also synthesis and secretion of many hormones and neurotransmitters. Cyclic nucleotides play a key role in the functioning of organs of sense (vision, smelling and taste). Under the control of cyclic nucleotides there are main metabolic processes: glycogenolysis and lipolysis. These nucleotides have been shown to participate in the genome expression, in growth, differentiation and proliferation of cells. Accelerating or decelerating the ionic transport across the biological membranes cyclic nucleotides influence the cell bioelectric activity as well its contractility. They may also change the properties of contractile and cytoskeleton proteins, thus interfering in the processes of mobility and shape formation of cells.  相似文献   
2.
A 23 kDa GTP-binding protein was purified from pig heart sarcolemma. This protein was not ADP-ribosylated by cholera, pertussis and botulinum C3 toxins. In pig heart sarcolemma pertussis toxin ADP-ribosylated 40 kDa subunit of Gi-protein, cholera toxin--45 kDa subunit of Gs-protein, botulinum C3 toxin ADP-ribosylated a group of proteins with Mr 22, 26 and 29 kDa. Antiserum generated against the peptide common for all alpha-subunits of G-proteins did not react with purified 23 kDa protein. Trypsin cleaved the 23 kDa protein in the presence of guanyl nucleotides into a 22 kDa fragment. Proteolysis of the 39 kDa alpha 0-subunit from bovine brain plasma membranes and ADP-ribosylated 40 kDa alpha i-subunit from pig heart sarcolemma in the presence of GTP gamma S yielded the 37 and 38 kDa fragments, respectively. In the presence of GTP and GDP the proteolysis of alpha 0 yielded the 24 and 15 kDa fragments, while the proteolysis of ADP-ribosylated alpha i-subunit yielded a labelled 16 kDa peptide. Irrespective of nucleotides trypsin cleaved the ADP-ribosylated 26 kDa substrate of botulinum C3 toxin into two labelled peptides with Mr 24 and 17 kDa. The data obtained indicate the existence in pig heart sarcolemma of a new 23 kDa GTP-binding protein with partial homology to the alpha-subunits of "classical" G-proteins.  相似文献   
3.
In this paper we examine the effect of the vasodilator peptide bradykinin on endothelial cell regulation of phosphoinositide (PI) turnover. The data show that the activation of PI turnover by bradykinin in bovine pulmonary artery endothelial cells is insensitive to pertussis toxin, which ADP ribosylates a membrane protein of mol wt 40,000. However, this effect of bradykinin can be potentiated by guanosine 5'-O-(3-thio)triphosphate (GTP gamma S), an activator of G proteins, and depressed by guanosine 5'-O-(2-thio)diphosphate (GDP beta S), an inhibitor of G proteins. After endothelial cells were preincubated for 1 h with GTP gamma S, there was a three- to fourfold increase in PI turnover. Preincubation of cells with GDP beta S did not affect the basal level of PI turnover, but completely prevented activation of PI turnover by bradykinin. 4 beta-Phorbol-12 beta-myristate-13 alpha-acetate can block the bradykinin-stimulated inositol monophosphate formation in cultured endothelial cells. The effects of bradykinin on PI turnover were blocked by B2 antagonists but not by B1 antagonists. Taken together, these results indicate that in endothelial cells the bradykinin B2 receptor is coupled to phospholipase C via a G protein (or proteins) that is not a substrate for pertussis toxin (neither Gi nor Go).  相似文献   
4.
The mechanisms by which endothelin-1 (ET-1) and endothelin-3 (ET-3) stimulate Ca2+ mobilization were investigated in rat aortic smooth muscle cells. Both ET-1 and ET-3 potently stimulated mobilization of Ca2+ from intracellular stores, however only ET-1-stimulated Ca2+ mobilization appeared to occur as a consequence of an elevation in cellular inositol trisphosphate (IP3) concentration. Neomycin, an inhibitor of phospholipase C, inhibited both the increase in [3H]IP3 formation and the mobilization of Ca2+ induced by ET-1, however it did not affect Ca2+ mobilization induced by ET-3. Together these findings indicate that ET-1 stimulates Ca2+ mobilization via an increase in IP3, whereas the effect of ET-3 appears to be mediated by a separate, IP3-independent signalling pathway.  相似文献   
5.
The dependence of the surface potential difference (ΔU), transversal elasticity module (E1) and membrane conductivity (G0) on the concentrations of the antiviral drugs, rimantadine and amantadine was studied in the planar bilayer lipid membrane system. The method used was based on independent measurements of the second and third harmonics of the membrane capacitance current. The binding constants of bilayer lipid membranes obtained from the drug adsorption isotherms were 2.1 · 105 M?1 and 1.3 · 104 M?1 for rimantadine and amantadine, respectively. The changes in G0 took place only after drug adsorption saturation had been achieved. The influence of rimantadine and amantadine on the interaction of bilayer lipid membranes with matrix protein from influenza virus was also investigated. The presence of 70 μg/ml rimantadine in the bathing solution resulted in an increase in the concentration of M-protein at which the adsorption and conductance changes were observed. The effects of amantadine were similar to those of rimantadine but required a higher critical concentration of amantadine. The results obtained suggest that the antiviral properties of rimantadine and amantadine may be related to the interaction of these drugs with the cell membrane, which can affect virus penetration into the cell as well as maturation of the viral particle at the cell membrane.  相似文献   
6.
Low density lipoproteins activate phosphoinositide turnover, increase free cytoplasmic calcium concentration and stimulate phosphorylation of 20- and 47-kDa proteins in blood platelets. All these effects are substantially potentiated by epinephrine.  相似文献   
7.
Inhibition of Yersinia protein tyrosine phosphatase by calix[4]arene mono-, bis-, and tetrakis(methylenebisphosphonic) acids as well as calix[4]arene and thiacalix[4]arene tetrakis(methylphosphonic) acids have been investigated. The kinetic studies revealed that some compounds in this class are potent competitive inhibitors of Yersinia PTP with inhibition constants in the low micromolar range. The binding modes of macrocyclic phosphonate derivatives in the enzyme active center have been explained using computational docking approach. The results obtained indicate that calix[4]arenes are promising scaffolds for the development of inhibitors of Yersinia PTP.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号