首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   11篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   6篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   7篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   10篇
  1999年   7篇
  1998年   8篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   6篇
  1990年   2篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
排序方式: 共有121条查询结果,搜索用时 187 毫秒
1.
2.
3.
The requirements for activation of the lytic machinery through CD2 of TCR gamma delta+/CD3+ cells were examined, by utilizing bispecific heteroconjugates containing anti-CD2 mAb cross-linked to anti-DNP. Contrary to the CD2 activation requirements in TCR alpha beta+/CD3+ cells, cytotoxic activity in TCR gamma delta+/CD3+ clones and TCR-/CD3- NK cell clones can be induced by heteroconjugates containing a single anti-CD2 (OKT11.1) mAb. Activation of TCR gamma delta+/CD3+ cells via CD2 is independent of heteroconjugates binding to CD16 (Fc gamma RIII), because heteroconjugates prepared from Fab fragments induced equal levels of lysis. Moreover, anti-CD16 mAb did not inhibit triggering via CD2 in TCR gamma delta+/CD3+ cells. In TCR-/CD3- NK cells, however, induction of cytotoxicity via CD2 is co-dependent on interplay with CD16. Anti-CD3 mAb blocked the anti-CD2 x anti-DNP heteroconjugate-induced cytotoxicity of TCR gamma delta+/CD3+ cells, indicating a functional linkage between CD2 and CD3 on these cells. We conclude that induction of lysis via CD2 shows qualitatively different activation requirements in TCR gamma delta+/CD3+, TCR alpha beta+/CD3+ CTL and TCR-/CD3- NK cells.  相似文献   
4.
A series of genomic clones containing DNA that encodes the chicken gamma-aminobutyric acidA (GABAA) receptor beta 4 subunit have been isolated. These have been restriction mapped and partially sequenced to determine the structural organization and the size of the beta 4-subunit gene. This gene, which comprises nine exons, spans more than 65 kb. The organization of the chicken GABAA receptor beta 4-subunit gene has been compared to that of the murine GABAA receptor delta-subunit gene and to those of the genes that encode other members of the ligand-gated ion-channel superfamily, namely muscle and neuronal nicotinic acetylcholine receptors (AChRs). Although the positions of the intron/exon boundaries of GABAA receptor subunit genes are seen to be highly conserved, there are significant differences between the genes that encode GABAA receptor and AChR subunits. These results are discussed in relation to the proposal that this superfamily of ligand-gated ion-channel receptor genes arose by duplication of an ancestral receptor gene.  相似文献   
5.
After either cholinergic or adrenergic stimulation of the submandibular glands of the mouse, a major protein of the incubation medium could be isolated by electrophoresis, designated the AM2 protein. About 5 per cent of the secreted proteins and 2.4 per cent of the secreted protein-bound sialic acid was recovered as the purified AM2 protein. The AM2 protein appeared to be electrophoretically pure in 7.5% polyacrylamide gel both at pH 8.9 and at pH 4.3. In sodium dodecyl sulfate-electrophoresis the molecular weight was estimated to be about 80 000 for the major component and about 40 000 for the minor component. By isoelectric focusing the isoelectric point has been determined to be 4.7. The amino acid analysis indicated Glx, Asx, Leu and Ala as the major amino acids, comprising 15.0, 10.6, 9.2 and 9.1 per cent of the amino acid residues, respectively. The ratio of the acidic amino acids and their amides (Glx plus Asx) to the basic amino acids (Lys plus Arg) was 2.2. The sugar analysis showed that the AM2 glycoprotein consists of 17.3 per cent of carbohydrate, with as major carbohydrate component glucosamine. The molar ratio of the sugars was Man : Gal : Glc : GlcNH2 : sialic acid = 2.3 : 1.0 : 4.7 : 9.8 : 2.9. Galactosamine could be detected as a trace component and fucose was not detectable.  相似文献   
6.
7.
A mechanism suggested to cause injury to preserved organs is the generation of oxygen free radicals either during the cold-storage period or after transplantation (reperfusion). Oxygen free radicals can cause peroxidation of lipids and alter the structural and functional properties of the cell membranes. Methods to suppress generation of oxygen free radicals of suppression of lipid peroxidation may lead to improved methods of organ preservation. In this study we determined how cold storage of rat hepatocytes affected lipid peroxidation by measuring thiobarbituric acid reactive products (malondialdehyde, MDA). Hepatocytes were stored in the UW solution +/- glutathione (GSH) or +/- polyethylene glycol (PEG) for up to 96 h and rewarmed (resuspended in a physiologically balanced saline solution and incubated at 37 degrees C under an atmosphere of oxygen) after each day of storage. Hepatocytes rewarmed after storage in the UW solution not containing PEG or GSH showed a nearly linear increase in MDA production with time of storage and contained 1.618 +/- 0.731 nmol MDA/mg protein after 96 h. When the storage solution contained PEG and GSH there was no significant increase in MDA production after up to 72 h of storage and at 96 h MDA was 0.827 +/- 0.564 nmol/mg protein. When freshly isolated hepatocytes were incubated (37 degrees C) in the presence of iron (160 microM) MDA formation was maximally stimulated (3.314 +/- 0.941 nmol/mg protein). When hepatocytes were stored in the presence of PEG there was a decrease in the capability of iron to maximally stimulate lipid peroxidation. The decrease in iron-stimulated MDA production was dependent upon the time of storage in PEG (1.773 nmol/mg protein at 24 h and 0.752 nmol/mg protein at 48 h).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
8.
9.
Lipopolysaccharide-binding protein (LBP) is an important modulator of the host's response to endotoxin. In a previous study, we found evidence for the synthesis of LBP by intestinal epithelial cells. In this study, we explored the polarity of LBP secretion by these cells. Polarized monolayers of Caco-2 cells were used as intestinal mucosa model. Cells were stimulated apically or basally with cytokines, and LBP secretion was analyzed. Furthermore, the presence of LBP in intestinal mucus of healthy and endotoxemic mice was studied using a mucus-sampling technique. The constitutive unipolar LBP secretion from the apical cell surface was markedly enhanced when cells were exposed to cytokines at their apical surface. However, bioactive LBP was secreted from both cell surfaces after basolateral stimulation of cells. Cytokines also influenced the secretion of the acute phase proteins serum amyloid A, apoA-I, and apoB from both surfaces of Caco-2 cells. Furthermore, transport of exogenous LBP from the basolateral to the apical cell surface was demonstrated. In line with these in vitro data, the presence of LBP in intestinal mucus was strongly enhanced in mice after a challenge with endotoxin. The results indicate that LBP is present at the mucosal surface of the intestine, a phenomenon for which secretion and transport of LBP by intestinal epithelial cells may be responsible.  相似文献   
10.
We investigated the mechanism by which cationic antimicrobial peptides block the activation of macrophages by LPS. The initial step in LPS signaling is the transfer of LPS to CD14 by LPS binding protein (LBP). Because many cationic antimicrobial peptides bind LPS, we asked whether these peptides block the binding of LPS to LBP. Using an assay that measures the binding of LPS to immobilized LBP, we show for the first time that a variety of structurally diverse cationic antimicrobial peptides block the interaction of LPS with LBP. The relative ability of different cationic peptides to block the binding of LPS to LBP correlated with their ability to block LPS-induced TNF-alpha production by the RAW 264.7 macrophage cell line.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号