首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   6篇
  2021年   2篇
  2017年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
  1992年   1篇
  1986年   2篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   3篇
  1971年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
Isoelectric focusing was used as the final step in the isolation of thymidine phosphorylase which was found to have an isoelectric point of 4.1. Analytical acrylamide gel electrophoresis showed the purified enzyme preparation contained one major protein band which stained for thymidine phosphorylase activity and usually a minor, faster migrating band devoid of activity. Inactivation of thymidine phosphorylase alone or in the presence of sensitizers by ultraviolet light, primarily at 253.7 nm, followed first order inactivation kinetics. The rate of inactivation of the enzyme was the same at pH 5 and 7.4 and the addition of various pyrimidine bases and nucleosides enhanced the inactivation rate at both pH values, but to a greater extent at pH 5. Linear plots of inactivation rates versus concentrations of thymidine or thymine were the same. At 7.8 mM thymidine or thymine, 11- and 4.4-fold increases in photoinactivation of thymidine phosphorylase were observed at pH 5 AND 7.4 RESPECTIVELY. Parabolic curves were obtained with increasing concentrations of either 5-iodo-2'-deoxyuridine or 5-iodouracil. 5-Iodouracil at 5.2 mM caused 212- (pH 5) and 100- (pH 7.4) FOLD INCREASES IN THE RATES OF PHOTOINACTIVATION OF THYMIDINE PHOSPHORYLASE. However, 5-iodo-2'-deoxyuridine at 5.0mM only enhanced the photoinactivation of enzyme by factors of 83 (pH 5) and 21 (pH 7.4). Neither 5-bromo-2'-deoxyuridine or 5-bromo-uracil was as potent in sensitizing the enzyme as the iodo analogs. Combinations of 5-iodouracil or 5-iodo-2'-deoxyuridine with thymine resulted in higher inactivation rates than the additive inactivation rates of individual compounds, whereas combinations of either iodo analog with thymidine resulted in lower inactivation rates. Increasing concentrations of phosphate or NaCl lessened the photoinactivation rate of thymidine phosphorylase alone and protected the enzyme from the sensitization caused by the different bases and nucleosides. No quantitative changes in the number of primary amino groups in thymidine phosphorylase was evident as a result of irradiation in the presence or absence of 5-iodouracil or 5-iodo-2'-deoxyuridine. Examination of the irradiated enzyme on Sephadex G-150 indicated that a larger protein species is formed and that 5-iodouracil promotes this process.  相似文献   
2.
3.
Voytek B  Davis M  Yago E  Barceló F  Vogel EK  Knight RT 《Neuron》2010,68(3):401-408
Memory and attention deficits are common after prefrontal cortex (PFC) damage, yet people generally recover some function over time. Recovery is thought to be dependent upon undamaged brain regions, but the temporal dynamics underlying cognitive recovery are poorly understood. Here, we provide evidence that the intact PFC compensates for damage in the lesioned PFC on a trial-by-trial basis dependent on cognitive load. The extent of this rapid functional compensation is indexed by transient increases in electrophysiological measures of attention and memory in the intact PFC, detectable within a second after stimulus presentation and only when the lesioned hemisphere is challenged. These observations provide evidence supporting a dynamic and flexible model of compensatory neural plasticity.  相似文献   
4.
How and where object and spatial information are perceptually integrated in the brain is a central question in visual cognition. Single-unit physiology, scalp EEG, and fMRI research suggests that the prefrontal cortex (PFC) is a critical locus for object-spatial integration. To test the causal participation of the PFC in an object-spatial integration network, we studied ten patients with unilateral PFC damage performing a lateralized object-spatial integration task. Consistent with single-unit and neuroimaging studies, we found that PFC lesions result in a significant behavioral impairment in object-spatial integration. Furthermore, by manipulating inter-hemispheric transfer of object-spatial information, we found that masking of visual transfer impairs performance in the contralesional visual field in the PFC patients. Our results provide the first evidence that the PFC plays a key, causal role in an object-spatial integration network. Patient performance is also discussed within the context of compensation by the non-lesioned PFC.  相似文献   
5.
Denitrification is an important net sink for NO3 ? in streams, but direct measurements are limited and in situ controlling factors are not well known. We measured denitrification at multiple scales over a range of flow conditions and NO3 ? concentrations in streams draining agricultural land in the upper Mississippi River basin. Comparisons of reach-scale measurements (in-stream mass transport and tracer tests) with local-scale in situ measurements (pore-water profiles, benthic chambers) and laboratory data (sediment core microcosms) gave evidence for heterogeneity in factors affecting benthic denitrification both temporally (e.g., seasonal variation in NO3 ? concentrations and loads, flood-related disruption and re-growth of benthic communities and organic deposits) and spatially (e.g., local stream morphology and sediment characteristics). When expressed as vertical denitrification flux per unit area of streambed (U denit, in μmol N m?2 h?1), results of different methods for a given set of conditions commonly were in agreement within a factor of 2–3. At approximately constant temperature (~20 ± 4°C) and with minimal benthic disturbance, our aggregated data indicated an overall positive relation between U denit (~0–4,000 μmol N m?2 h?1) and stream NO3 ? concentration (~20–1,100 μmol L?1) representing seasonal variation from spring high flow (high NO3 ?) to late summer low flow (low NO3 ?). The temporal dependence of U denit on NO3 ? was less than first-order and could be described about equally well with power-law or saturation equations (e.g., for the unweighted dataset, U denit ≈26 * [NO3 ?]0.44 or U denit ≈640 * [NO3 ?]/[180 + NO3 ?]; for a partially weighted dataset, U denit ≈14 * [NO3 ?]0.54 or U denit ≈700 * [NO3 ?]/[320 + NO3 ?]). Similar parameters were derived from a recent spatial comparison of stream denitrification extending to lower NO3 ? concentrations (LINX2), and from the combined dataset from both studies over 3 orders of magnitude in NO3 ? concentration. Hypothetical models based on our results illustrate: (1) U denit was inversely related to denitrification rate constant (k1denit, in day?1) and vertical transfer velocity (v f,denit, in m day?1) at seasonal and possibly event time scales; (2) although k1denit was relatively large at low flow (low NO3 ?), its impact on annual loads was relatively small because higher concentrations and loads at high flow were not fully compensated by increases in U denit; and (3) although NO3 ? assimilation and denitrification were linked through production of organic reactants, rates of NO3 ? loss by these processes may have been partially decoupled by changes in flow and sediment transport. Whereas k1denit and v f,denit are linked implicitly with stream depth, NO3 ? concentration, and(or) NO3 ? load, estimates of U denit may be related more directly to field factors (including NO3 ? concentration) affecting denitrification rates in benthic sediments. Regional regressions and simulations of benthic denitrification in stream networks might be improved by including a non-linear relation between U denit and stream NO3 ? concentration and accounting for temporal variation.  相似文献   
6.
Abstract The species composition of ammonia-oxidizing bacteria in aquatic environments was investigated using PCR primers for 16S rRNA genes to amplify specific subsets of the total ammonia-oxidizer population. The specificity of the amplification reactions was determined using total genomic DNA from known nitrifying strains and non-nitrifying strains identified as having similar rDNA sequences. Specificity of amplification was determined both for direct amplification, using the nitrifier specific primers, and with nested amplification, in which the nitrifier primers were used to reamplify a fragment obtained from direct amplification with Eubacterial universal primers. The present level of specificity allows the distinction between Nitrosomonas europaea, Nitrosomonas sp. (marine) and the other known ammonia-oxidizers in the beta subclass of the Proteobacteria. Using total DNA extracted from natural samples, we used direct amplification to determine presence/absence of different species groups. Species composition was found to differ among depths in vertical profiles of lake samples and among samples and enrichments from various other aquatic environments. Nested PCR yielded several more positive reactions, which implies that nitrifier DNA was present in most samples, but often at very low levels. Received: 25 September 1995; Revised: 15 January 1996; Accepted: 20 February 1996  相似文献   
7.
The cell cycle marker event of DNA replication in eucaryotic algae was identified using 3H-Thymidine (3H-TdR) incorporation. The frequency of cells (F) within a population undergoing DNA replication was estimated and the cell division rate (μF) calculated. In laboratory cultures the rates of cell division calculated from changes in cell numbers (μN) and μF were similar. Dual labelling with 3H-TdR and NaH14CO3 enabled rates of cell division and photosynthesis to be coincidently measured for individual species of algae. Using these single species radioisotope techniques, several distinct photosynthesis irradiance and cell division irradiance relationships were found for: (1) different species of phytoplankton isolated from the same sample, and (2) the same species isolated from different environments. These techniques allow the coupling between photosynthesis and cell division to be examined with high resolution for algae in situ.  相似文献   
8.
The dynamin-related GTPase, Dnm1, self-assembles into punctate structures that are targeted to the outer mitochondrial membrane where they mediate mitochondrial division. Post-targeting, Dnm1-dependent division is controlled by the actions of the WD repeat protein, Mdv1, and the mitochondrial tetratricopeptide repeat-like outer membrane protein, Fis1. Our previous studies suggest a model where at this step Mdv1 functions as an adaptor linking Fis1 with Dnm1. To gain insight into the exact role of the Fis1.Mdv1.Dnm1 complex in mitochondrial division, we performed a structure-function analysis of the Mdv1 adaptor. Our analysis suggests that dynamic interactions between Mdv1 and Dnm1 play a key role in division by regulating Dnm1 self-assembly.  相似文献   
9.
Yeast mitochondrial fission is a multistep process during which the dynamin-related GTPase, Dnm1p, assembles into punctate structures that associate with the outer mitochondrial membrane and mediate mitochondrial division. Steps in the Dnm1p-dependent process of fission are regulated by the actions of the WD repeat protein, Mdv1p, and the mitochondrial outer membrane protein, Fis1p. Our previous studies suggested a model where Mdv1p functions to regulate fission at a post-Dnm1p assembly step and Fis1p functions at two distinct steps, at an early point, to regulate Dnm1p assembly, and later, together with Mdv1p, to facilitate Dnm1p-dependent mitochondrial fission. To test this model, we have examined the physical and functional relationship between Mdv1p and Fis1p and present genetic, biochemical, and two-hybrid data indicating that a Fis1p-Mdv1p complex is required to regulate mitochondrial fission. To further define the role of Mdv1p in fission, we examined the structural features of Mdv1p required for its interactions with Dnm1p and Fis1p. Data from two-hybrid analyses and GFP-tagged domains of Mdv1p indicate that it contains two functionally distinct domains that enable it to function as a molecular adaptor to regulate sequential interactions between Dnm1p and Fis1p and catalyze a rate-limiting step in mitochondrial fission.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号