首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   3篇
  66篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   7篇
  2011年   6篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1977年   3篇
  1976年   4篇
  1975年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
Environmental stresses trigger a wide variety of plant responses, ranging from altered gene expression and cellular metabolism to changes in growth rates and crop yields. A plethora of plant reactions exist to circumvent the potentially harmful effects caused by a wide range of both abiotic and biotic stresses, including light, drought, salinity, high temperatures, and pathogen infections. Among the environmental stresses, drought stress is one of the most adverse factors of plant growth and productivity. Understanding the biochemical and molecular responses to drought is essential for a holistic perception of plant resistance mechanisms to water-limited conditions. Drought stress progressively decreases CO2 assimilation rates due to reduced stomatal conductance. Drought stress also induces reduction in the contents and activities of photosynthetic carbon reduction cycle enzymes, including the key enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase. The critical roles of proline and glycine-betaine, as well as the role of abscisic acid (ABA), under drought stress conditions have been actively researched to understand the tolerance of plants to dehydration. In addition, drought stress-induced generation of active oxygen species is well recognized at the cellular level and is tightly controlled at both the production and consumption levels in vivo, through increased antioxidative systems. Knowledge of sensing and signaling pathways, including ABA-mediated changes in response to drought stress, is essential to improve crop management. This review focuses on the ability and strategies of higher plants to respond and adapt to drought stress.  相似文献   
2.
Hemextin AB complex from the venom of Hemachatus haemachatus is the first known natural anticoagulant that specifically inhibits the enzymatic activity of blood coagulation factor VIIa in the absence of factor Xa. It is also the only known heterotetrameric complex of two three-finger toxins. Individually only hemextin A has mild anticoagulant activity, whereas hemextin B is inactive. However, hemextin B synergistically enhances the anticoagulant activity of hemextin A and their complex exhibits potent anticoagulant activity. In this study we characterized the nature of molecular interactions leading to the complex formation. Circular dichroism studies indicate the stabilization of β-sheet in the complex. Hemextin AB complex has an increased apparent molecular diameter in both gas and liquid phase techniques. The complex formation is enthalpically favorable and entropically unfavorable with a negative change in the heat capacity. Thus, the anticoagulant complex shows less structural flexibility than individual subunits. Both electrostatic and hydrophobic interactions are important for the complexation; the former driving the process and the latter helping in the stabilization of the tetramer. The tetramer dissociates into dimers and monomers with the increase in the ionic strength of the solution and also with increase in the glycerol concentration in the buffer. The two dimers formed under each of these conditions display distinct differences in their apparent molecular diameters and anticoagulant properties. Based on these results, we have proposed a model for this unique anticoagulant complex.  相似文献   
3.

Aim

To compare and evaluate the performance of two different volumetric modulated arc therapy delivery techniques.

Background

Volumetric modulated arc therapy is a novel technique that has recently been made available for clinical use. Planning and dosimetric comparison study was done for Elekta VMAT and Varian RapidArc for different treatment sites.

Materials and methods

Ten patients were selected for the planning comparison study. This includes 2 head and neck, 2 oesophagus, 1 bladder, 3 cervix and 2 rectum cases. Total dose of 50 Gy was given for all the plans. All plans were done for RapidArc using Eclipse and for Elekta VMAT with Monaco treatment planning system. All plans were generated with 6 MV X-rays for both RapidArc and Elekta VMAT. Plans were evaluated based on the ability to meet the dose volume histogram, dose homogeneity index, radiation conformity index, estimated radiation delivery time, integral dose and monitor units needed to deliver the prescribed dose.

Results

RapidArc plans achieved the best conformity (CI95% = 1.08 ± 0.07) while Elekta VMAT plans were slightly inferior (CI95% = 1.10 ± 0.05). The in-homogeneity in the PTV was highest with Elekta VMAT with HI equal to 0.12 ± 0.02 Gy when compared to RapidArc with 0.08 ± 0.03. Significant changes were observed between the RapidArc and Elekta VMAT plans in terms of the healthy tissue mean dose and integral dose. Elekta VMAT plans show a reduction in the healthy tissue mean dose (6.92 ± 2.90) Gy when compared to RapidArc (7.83 ± 3.31) Gy. The integral dose is found to be inferior with Elekta VMAT (11.50 ± 6.49) × 104 Gy cm3 when compared to RapidArc (13.11 ± 7.52) × 104 Gy cm3. Both Varian RapidArc and Elekta VMAT respected the planning objective for all organs at risk. Gamma analysis result for the pre-treatment quality assurance shows good agreement between the planned and delivered fluence for 3 mm DTA, 3% DD for all the evaluated points inside the PTV, for both VMAT and RapidArc techniques.

Conclusion

The study concludes that a variable gantry speed with variable dose rate is important for efficient arc therapy delivery. RapidArc presents a slight improvement in the OAR sparing with better target coverage when compared to Elekta VMAT. Trivial differences were noted in all the plans for organ at risk but the two techniques provided satisfactory conformal avoidance and conformation.  相似文献   
4.
5.
Microsomal cytochrome b5 (cytb5) is a membrane-bound protein that modulates the catalytic activity of its redox partner, cytochrome P4502B4 (cytP450). Here, we report the first structure of full-length rabbit ferric microsomal cytb5 (16 kDa), incorporated in two different membrane mimetics (detergent micelles and lipid bicelles). Differential line broadening of the cytb5 NMR resonances and site-directed mutagenesis data were used to characterize the cytb5 interaction epitope recognized by ferric microsomal cytP450 (56 kDa). Subsequently, a data-driven docking algorithm, HADDOCK (high ambiguity driven biomolecular docking), was used to generate the structure of the complex between cytP4502B4 and cytb5 using experimentally derived restraints from NMR, mutagenesis, and the double mutant cycle data obtained on the full-length proteins. Our docking and experimental results point to the formation of a dynamic electron transfer complex between the acidic convex surface of cytb5 and the concave basic proximal surface of cytP4502B4. The majority of the binding energy for the complex is provided by interactions between residues on the C-helix and β-bulge of cytP450 and residues at the end of helix α4 of cytb5. The structure of the complex allows us to propose an interprotein electron transfer pathway involving the highly conserved Arg-125 on cytP450 serving as a salt bridge between the heme propionates of cytP450 and cytb5. We have also shown that the addition of a substrate to cytP450 likely strengthens the cytb5-cytP450 interaction. This study paves the way to obtaining valuable structural, functional, and dynamic information on membrane-bound complexes.  相似文献   
6.
Pandian  T. J.  Vivekanandan  E. 《Hydrobiologia》1976,49(1):33-39
Reared in (tubular) aquaria containing different depths of water, Ophiocephalus striatus (0.7 g, 4.5 cm body length), an obligatory air-breathing tropical fish, swam long or short distances to enable themselves to exchange atmospheric air. In each tested depth (2.5, 5.0, 15.5, 31.0 and 40.0 cm) series, one group was starved, while the other was fed ad libitum twice a day on fish muscle. In the shallowest water (2.5 cm depth), the feeding group surfaced 1,294 times, travelling 64.7 m at an energy cost of 20.4 mg dry fish substance/g live fish/day, against those exposed to the deepest water (40 cm depth), which expended 35.8 mg/g/day, swimming 1,503.4 m on 1,879 visits to the surface. The starving group surfaced only 482 times, travelling 24.1 m at an expense of 5.8 mg/g/day in the shallowest water, while those at 40 cm depth surfaced 504 times, swimming 403.2 m at an energy cost of 7.4 mg/g/day. Owing to the sustained swimming activity and the consequent fatigue, the test individuals belonging to both groups in all the tested series hang to the surface for a definite interval, repaying the O2 debt. Observations were also made to assess the duration of hanging to precisely estimate the distance travelled. Irrespective of changes in depths of water, the duration of hanging to surface was only 3.0 hr/day for the feeding groups, while it was as much as 15.5 hr/day for the starving groups. The maximum sustained metabolic level of O.striatus reared in 40 cm depth was equivalent to 1.23 ml O2/g/hr, which is about 2 times higher than the value reported for the active metabolism of swimming Oncorhynchus nerka at 15°C in Brett's (1964) respirometer. O.striatus reared in 2.5 cm depth fed 32.0 mg and converted 6.7 mg dry food/g live fish/day, while those exposed to the deepest water fed 49.1 mg, but converted only 5.5 mg/g/day. Culturing obligatory air-breathing fishes in shallow waters will be advantageous.  相似文献   
7.
Agastian  P.  Kingsley  S.J.  Vivekanandan  M. 《Photosynthetica》2000,38(2):287-290
Mulberry genotypes were subjected to salinity (0–12 mS cm–1) in pot culture experiment. Chlorophyll and total carotenoid contents were reduced considerably by salinity. At low salinity, photosynthetic CO2 uptake increased over the control, but it decreased at higher salinity. Contents of soluble proteins, free amino acids, soluble sugars, sucrose, starch, and phenols increased at salinity of 1–2 mS cm–1 and decreased at higher salinity (8–12 mS cm–1). Glycine betaine accumulated more than proline, the maximum accumulation of both was at salinity of 2–4 mS cm–1. Among the genotypes studied, BC2-59 followed by S-30 showed better salinity tolerance than M-5.  相似文献   
8.
Dai L  He J  Liu Y  Byun J  Vivekanandan A  Pennathur S  Fan X  Lubman DM 《Proteomics》2011,11(23):4529-4540
Notch signaling has been demonstrated to have a central role in glioblastoma (GBM) cancer stem cells (CSCs) and we have demonstrated recently that Notch pathway blockade by γ-secretase inhibitor (GSI) depletes GBM CSCs and prevents tumor propagation both in vitro and in vivo. In order to understand the proteome alterations involved in this transformation, a dose-dependent quantitative mass spectrometry (MS)-based proteomic study has been performed based on the global proteome profiling and a target verification phase where both Immunoassay and a multiple reaction monitoring (MRM) assay are employed. The selection of putative protein candidates for confirmation poses a challenge due to the large number of identifications from the discovery phase. A multilevel filtering strategy together with literature mining is adopted to transmit the most confident candidates along the pipeline. Our results indicate that treating GBM CSCs with GSI induces a phenotype transformation towards non-tumorigenic cells with decreased proliferation and increased differentiation, as well as elevated apoptosis. Suppressed glucose metabolism and attenuated NFR2-mediated oxidative stress response are also suggested from our data, possibly due to their crosstalk with Notch Signaling. Overall, this quantitative proteomic-based dose-dependent work complements our current understanding of the altered signaling events occurring upon the treatment of GSI in GBM CSCs.  相似文献   
9.
We have identified a novel Ca2+-signal sensing GTPase (643 amino acid residues with an estimated molecular mass of 79 kDa) from the Arabidopsis genome database. This protein contains a RHO-like GTPase domain at the N-terminus (15–184 amino acids) and two calcium-binding EF-hand motifs (199–227 and 319–347 amino acids, respectively). It has the capability to bind calcium and hydrolyze GTP; in addition, its GTPase activity is regulated by changes in Ca2+ concentration. The expression of this gene was induced by ABA and salt stresses, and specific knock-out mutants were highly sensitive to ABA and salt treatments. These findings suggest that this protein is a novel ABA- and salt stress-related Ca2+ signal transducer.  相似文献   
10.
The impact of continuous rise in ambient CO2 concentration (AC) in the atmosphere on different facets of growth of crop plants is assessed. The effects of CO2 enrichment (EC) on plant growth, C3 and C4 photosynthesis, source-sink ratio, partitioning and translocation of metabolites, photosynthetic enzymes, respiratory rate, leaf area index, stomatal conductance (q s ), transpiration rate, biomass production and water use efficiency are reviewed. The CO2 fertilization effects are studied in both short-term (open top chambers) and long-term experiments. Long-term experiments suggest that ribulose-1,5-bisphosphate carboxylase is inactivated at high CO2 concentrations. Also g s is lowered. One of the conspicuous effects of EC is the closure of stomata in C3 plants. Photosystem (PS) 2 electron transport is more affected than PS1. Starch is the immediate product accumulated in the leaf of C3 plants. The “CO2 fertilization effect” does not confer any great advantage even in C3 plants. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号