首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   3篇
  14篇
  2018年   1篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  1998年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Lung carbon monoxide (CO) transfer and pulmonary capillary blood volume (Vc) at high altitudes have been reported as being higher in native highlanders compared to acclimatised lowlanders but large discrepancies appears between the studies. This finding raises the question of whether hypoxia induces pulmonary angiogenesis.Eighteen highlanders living in Bolivia and 16 European lowlander volunteers were studied. The latter were studied both at sea level and after acclimatisation to high altitude. Membrane conductance (DmCO) and Vc, corrected for the haemoglobin concentration (Vccor), were calculated using the NO/CO transfer technique. Pulmonary arterial pressure and left atrial pressures were estimated using echocardiography.Highlanders exhibited significantly higher NO and CO transfer than acclimatised lowlanders, with Vccor/VA and DmCO/VA being 49 and 17% greater (VA: alveolar volume) in highlanders, respectively. In acclimatised lowlanders, DmCO and DmCO/VA values were lower at high altitudes than at sea level. Echocardiographic estimates of cardiac output and pulmonary arterial pressure were significantly elevated at high altitudes as compared to sea level.The decrease in DmCO in lowlanders might be due to altered gas transport in the airways due to the low density of air at high altitudes. The disproportionate increase in Vc in Andeans compared to the change in DmCO suggests that the recruitment of capillaries is associated with a thickening of the blood capillary sheet. Since there was no correlation between the increase in Vc and the slight alterations in haemodynamics, this data suggests that chronic hypoxia might stimulate pulmonary angiogenesis in Andeans who live at high altitudes.  相似文献   
2.
The disordered phases of LiCB11H12 and NaCB11H12 possess superb superionic conductivities that make them suitable as solid electrolytes. In these materials, cation diffusion correlates with high orientational mobilities of the CB11H12? anions; however, the precise relationship has yet to be demonstrated. In this work, ab initio molecular dynamics and quasielastic neutron scattering are combined to probe anion reorientations and their mechanistic connection to cation mobility over a range of timescales and temperatures. It is found that anions do not rotate freely, but rather transition rapidly between orientations defined by the cation sublattice symmetry. The symmetry‐breaking carbon atom in CB11H12? also plays a critical role by perturbing the energy landscape along the instantaneous orientation of the anion dipole, which couples fluctuations in the cation probability density directly to the anion motion. Anion reorientation rates exceed 3 × 1010 s?1, suggesting the underlying energy landscape fluctuates dynamically on diffusion‐relevant timescales. Furthermore, carbon is found to modify the orientational preferences of the anions and aid rotational mobility, creating additional symmetry incompatibilities that inhibit ordering. The results suggest that synergy between the anion reorientational dynamics and the carbon‐modified cation–anion interaction accounts for the higher ionic conductivity in CB11H12? salts compared with B12H122?.  相似文献   
3.
Hypoxia impairs metabolic functions by decreasing activity and expression of ATP-consuming processes. To separate hypoxia from systemic effects, we tested whether hypoxia at high altitude affects basal and PMA-stimulated leukocyte metabolism and how this compares to acute (15 min) and 24 h of in vitro hypoxia. Leukocytes were prepared at low altitude and ~24 h after arrival at 4559 m. Mitochondrial oxygen consumption (JO?) was measured by respirometry, oxygen radicals by electron spin resonance spectroscopy, both at a Po? = 100 mmHg (JO?,???) and 20 mmHg (JO?,??). Acute hypoxia of leukocytes decreased JO? at low altitude. Exposure to high altitude decreased JO?,???, whereas JO?,?? was not affected. Acute hypoxia of low-altitude samples decreased the activity of complexes I, II, and III. At high altitude, activity of complexes I and III were decreased when measured in normoxia. Stimulation of leukocytes with PMA increased JO?,??? at low (twofold) and high altitude (five-fold). At both locations, PMA-stimulated JO? was decreased by acute hypoxia. Basal and PMA-stimulated reactive oxygen species (ROS) production were unchanged at high altitude. Separate in vitro experiments performed at low altitude show that ~75% of PMA-induced increase in JO? was due to increased extra-mitochondrial JO? (JO?(,res); in the presence of rotenone and antimycin A). JO?(,res) was doubled by PMA. Acute hypoxia decreased basal JO?(,res) by ~70% and PMA-stimulated JO?(,res) by about 50% in cells cultured in normoxia and hypoxia (1.5% O?; 24 h). Conversely, 24 h in vitro hypoxia decreased mitochondrial JO?,??? and JO?,??, extra-mitochondrial, basal, and PMA-stimulated JO? were not affected. These results show that 24 h of high altitude but not 24 h in vitro hypoxia decreased basal leukocyte metabolism, whereas PMA-induced JO? and ROS formation were not affected, indicating that prolonged high-altitude hypoxia impairs mitochondrial metabolism but does not impair respiratory burst. In contrast, acute hypoxia impairs respiratory burst at either altitude.  相似文献   
4.
5.
6.
Aerobic exercise capacity is decreased at altitude because of combined decreases in arterial oxygenation and in cardiac output. Hypoxic pulmonary vasoconstriction could limit cardiac output in hypoxia. We tested the hypothesis that acetazolamide could improve exercise capacity at altitude by an increased arterial oxygenation and an inhibition of hypoxic pulmonary vasoconstriction. Resting and exercise pulmonary artery pressure (Ppa) and flow (Q) (Doppler echocardiography) and exercise capacity (cardiopulmonary exercise test) were determined at sea level, 10 days after arrival on the Bolivian altiplano, at Huayna Potosi (4,700 m), and again after the intake of 250 mg acetazolamide vs. a placebo three times a day for 24 h. Acetazolamide and placebo were administered double-blind and in a random sequence. Altitude shifted Ppa/Q plots to higher pressures and decreased maximum O(2) consumption ((.)Vo(2max)). Acetazolamide had no effect on Ppa/Q plots but increased arterial O(2) saturation at rest from 84 +/- 5 to 90 +/- 3% (P < 0.05) and at exercise from 79 +/- 6 to 83 +/- 4% (P < 0.05), and O(2) consumption at the anaerobic threshold (V-slope method) from 21 +/- 5 to 25 +/- 5 ml.min(-1).kg(-1) (P < 0.01). However, acetazolamide did not affect (.)Vo(2max) (from 31 +/- 6 to 29 +/- 7 ml.kg(-1).min(-1)), and the maximum respiratory exchange ratio decreased from 1.2 +/- 0.06 to 1.05 +/- 0.03 (P < 0.001). We conclude that acetazolamide does not affect maximum exercise capacity or pulmonary hemodynamics at high altitudes. Associated changes in the respiratory exchange ratio may be due to altered CO(2) production kinetics.  相似文献   
7.
Programmed cell death (PCD) is a genetically controlled cell death that is regulated during development and activated in response to environmental stresses or pathogen infection. The degree of conservation of PCD across kingdoms and phylum is not yet clear; however, whereas caspases are proteases that act as key components of animal apoptosis, plants have no orthologous caspase sequences in their genomes. The discovery of plant and fungi metacaspases as proteases most closely related to animal caspases led to the hypothesis that metacaspases are the functional homologues of animal caspases in these organisms. Arabidopsis thaliana has nine metacaspase genes, and so far it is unknown which members of the family if any are involved in the regulation of PCD. We show here that metacaspase-8 (AtMC8) is a member of the gene family strongly up-regulated by oxidative stresses caused by UVC, H(2)O(2), or methyl viologen. This up-regulation was dependent of RCD1, a mediator of the oxidative stress response. Recombinant metacaspase-8 cleaved after arginine, had a pH optimum of 8, and complemented the H(2)O(2) no-death phenotype of a yeast metacaspase knock-out. Overexpressing AtMC8 up-regulated PCD induced by UVC or H(2)O(2), and knocking out AtMC8 reduced cell death triggered by UVC and H(2)O(2) in protoplasts. Knock-out seeds and seedlings had an increased tolerance to the herbicide methyl viologen. We suggest that metacaspase-8 is part of an evolutionary conserved PCD pathway activated by oxidative stress.  相似文献   
8.
Death by proteases in plants: whodunit   总被引:6,自引:0,他引:6  
Several studies have shown that protease inhibitors can suppress programmed cell death in various plant species and plant tissues. This is especially true of caspase inhibitors that can block programmed cell death and its marker DNA laddering. There are up to six different caspase-like activities that can be measured in plant extracts, the most prominent being caspase1-like and caspase3-like. These activities can be located in vacuoles and also in the nucleus or the cytoplasm. This represents a striking apparent similarity with animal programmed cell death. Because there are no caspase orthologue in plant genomes, a major challenge is to identify these proteases. Recently two proteases with caspase-like activities have been recognized as belonging to two different protease families that are not closely related to animal caspases. Various other protease families have been implicated and this suggests that complex protease networks have been recruited for the plant cell demise.  相似文献   
9.
The present paper describes the synthesis, characterization and in vitro biological evaluation screening of different classes (ammoniacates, dioximates, carboxylates, semi- and thiosemicarbazidates) of Co(II), Co(III), Cu(II), Ni(II), Mn(II), Zn(II) and Fe(III) complexes. Schiff bases were obtained from the reaction of some salicyl aldehydes with, respectively, furoylhydrazine, benzoylhydrazine, semicarbazide, thiosemicarbazide and S-methylthiosemicarbazide to give tridentate ligands containing ONO, ONS or ONN as donor atoms. The synthetic metal complexes are of various geometrical and electronic structures, thermodynamic and thermal stabilities, and magnetic and conductance properties. All complexes, except those of Cu, are octahedral. Some Cu, Co and Mn compounds have a dimeric or a polymeric structure. The composition and structure of complexes were analysed by elemental analysis, IR and 1H NMR and 13C NMR spectroscopies, and magnetochemical, thermoanalytical and molar conductance measurements. All ligands and metal complexes were tested as inhibitors of human leukemia (HL-60) cells growth, and the most potent, the Cu(II) complexes, have been also tested for their in vitro antibacterial and antifungal activities. Structure-activity relationships were carried out.  相似文献   
10.
Lung diffusing capacity has been reported variably in high-altitude newcomers and may be in relation to different pulmonary vascular resistance (PVR). Twenty-two healthy volunteers were investigated at sea level and at 5,050 m before and after random double-blind intake of the endothelin A receptor blocker sitaxsentan (100 mg/day) vs. a placebo during 1 wk. PVR was estimated by Doppler echocardiography, and exercise capacity by maximal oxygen uptake (Vo(2 max)). The diffusing capacities for nitric oxide (DL(NO)) and carbon monoxide (DL(CO)) were measured using a single-breath method before and 30 min after maximal exercise. The membrane component of DL(CO) (Dm) and capillary volume (Vc) was calculated with corrections for hemoglobin, alveolar volume, and barometric pressure. Altitude exposure was associated with unchanged DL(CO), DL(NO), and Dm but a slight decrease in Vc. Exercise at altitude decreased DL(NO) and Dm. Sitaxsentan intake improved Vo(2 max) together with an increase in resting and postexercise DL(NO) and Dm. Sitaxsentan-induced decrease in PVR was inversely correlated to DL(NO). Both DL(CO) and DL(NO) were correlated to Vo(2 max) at sea level (r = 0.41-0.42, P < 0.1) and more so at altitude (r = 0.56-0.59, P < 0.05). Pharmacological pulmonary vasodilation improves the membrane component of lung diffusion in high-altitude newcomers, which may contribute to exercise capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号