首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
  2006年   3篇
  2005年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Deficiency of 5-methyltetrahydrofolate (5-MTHF) in cerebrospinal fluid (CSF) is associated with a number of neurometabolic conditions including mitochondrial electron transport chain defects. Whilst failure of the active transport of 5-methyltetrahydrofolate (5-MTHF) into the CSF compartment has been proposed as a potential mechanism responsible for the 5-MTHF deficiency seen in mitochondrial disorders, it is becoming increasingly clear that other mechanisms are involved. Here, we have considered the role of oxidative stress as a contributing mechanism. Concerning, ascorbic acid (AA), we have established a CSF reference range (103–303 μM) and demonstrated a significant positive correlation between 5-MTHF and AA. Furthermore, CSF itself was also shown to convey antioxidant properties towards 5-MTHF. However, this protection could be overcome by the introduction of a hydroxyl radical generating system. Using a neuronal model system, inhibition of mitochondrial complex I, by 58%, was associated with a 23% increase in superoxide generation and a significantly increased loss of 5-MTHF from the extracellular medium. Addition of AA (150 μM) was able to prevent this increased 5-MTHF catabolism. We conclude that increased generation of reactive oxygen species and/or loss of CSF antioxidants are also factors to consider with regard to the development of a central 5-MTHF deficiency. Co-supplementation of AA together with appropriate folate replacement may be of therapeutic benefit.  相似文献   
2.
There is increasing interest in the emerging view that tea improves the antioxidant status in vivo and thereby helps to lower risk of certain types of cancer, coronary heart disease and stroke and its component biofactors could provide prophylactic potential for these diseases. The polyphenolic composition and the antioxidant properties of organic extracts (acetone/methanol) of Mauritian commercial black teas were evaluated. HPLC data of the individual compounds revealed remarkably high levels (+)-Catechin ((+)-C), (-)-epicatechin ((-)-EC), (-)-epicatechin 3-gallate ((-)-ECG), (-)-epigallocatechin ((-)-EGC), (-)-epigallocatechin 3-gallate ((-)-EGCG) and gallic acid. Analysis of hydrolysed extracts indicated that quercetin was the dominant flavonol aglycone with traces of myricetin and kaempferol. Based on the Ferric Reducing Antioxidant Power (FRAP) and the Trolox Equivalent Antioxidant Capacity (TEAC) assays Extra tea from Bois Chéri exhibited the highest antioxidant potential. Linear regression analyses showed that the antioxidant capacities of the organic extracts are strongly influenced by total phenols (TEAC: r=0.95 and FRAP: r=0.96) and to a lesser extent by total proanthocyanidin and total flavonoid contents. Catechins and gallic acid seem to add up to the overall antioxidant capacity of black tea extracts. The fresh tea leaves had high levels of total phenols, total flavonoids, total proanthocyanidin and exhibited greater antioxidant potential when compared with black teas. Organic extracts of endemic teas represent useful source of phenolic antioxidants supplements for prophylactic use.  相似文献   
3.
The phenolic constituents of Mauritian endemic plants from the Rubiaceae and Myrtaceae family were assessed and correlated with their potential antioxidant activities in vitro. The antioxidant activities of the plant extracts ranged from 0.27 to 1.49mmol Trolox equivalent/g FW and from 0.20 to 1.39mmol Fe(II) equivalent/g FW in the TEAC and FAP assays, respectively, with Syzygium commersonii showing the highest activity in these two systems. Eugenia orbiculata and all the Syzygium species were effective scavengers of hypochlorous acid while Monimiastrum acutisepalum was the most potent inhibitor of deoxyribose degradation. The plant extracts inhibited microsomal lipid peroxidation with low IC(50)s ranging from 0.02 to 1.75mgFW/mL when reaction was initiated with Fe(3+)/ascorbate and from 0.093 to 1.55mgFW/mL in the AAPH-dependent lipid peroxidation. The potential prooxidant nature of the plant extracts was compared with ascorbate (250microM) using copper-phenanthroline assay. The plant extracts at concentrations up to 5gFW/L were not prooxidant. However, Myonima nitens, Syzygium commersonii, Syzygium glomeratum and Syzygium mauritianum at concentrations of 10gFW/L had potency approaching 50% of the prooxidant activity of ascorbic acid in vitro, suggesting relative safeties. The total phenolics influenced the antioxidant activities in the TEAC, FRAP and HOCl scavenging assays whereas a negative correlation was observed with the deoxyribose assay. The high levels of polyphenolic compounds and the significant antioxidant activities of these Rubiaceae and Myrtaceae plant family make them suitable candidates as prophylactic agent.  相似文献   
4.
5.
Phenolics as potential antioxidant therapeutic agents: mechanism and actions   总被引:16,自引:0,他引:16  
Accumulating chemical, biochemical, clinical and epidemiological evidence supports the chemoprotective effects of phenolic antioxidants against oxidative stress-mediated disorders. The pharmacological actions of phenolic antioxidants stem mainly from their free radical scavenging and metal chelating properties as well as their effects on cell signaling pathways and on gene expression. The antioxidant capacities of phenolic compounds that are widely distributed in plant-based diets were assessed by the Trolox equivalent antioxidant capacity (TEAC), the ferric reducing antioxidant power (FRAP), the hypochlorite scavenging capacity, the deoxyribose method and the copper-phenanthroline-dependent DNA oxidation assays. Based on the TEAC, FRAP and hypochlorite scavenging data, the observed activity order was: procyanidin dimer > flavanol > flavonol > hydroxycinnamic acids > simple phenolic acids. Among the flavonol aglycones, the antioxidant propensities decrease in the order quercetin, myricetin and kaempferol. Gallic acid and rosmarinic acid were the most potent antioxidants among the simple phenolic and hydroxycinnamic acids, respectively. Ferulic acid displayed the highest inhibitory activity against deoxyribose degradation but no structure–activity relationship could be established for the activities of the phenolic compounds in the deoxyribose assay. The efficacies of the phenolic compounds differ depending on the mechanism of antioxidant action in the respective assay used, with procyanidin dimers and flavan-3-ols showing very potent activities in most of the systems tested. Compared to the physiologically active (glutathione, -tocopherol, ergothioneine) and synthetic (Trolox, BHA, BHT) antioxidants, these compounds exhibited much higher efficacy. Plant-derived phenolics represents good sources of natural antioxidants, however, further investigation on the molecular mechanism of action of these phytochemicals is crucial to the evaluation of their potential as prophylactic agents.  相似文献   
6.
Interdisciplinary research endeavors are directed at understanding the molecular mechanisms of neurodegenerative and chronic diseases that affect human lifestyle. Hence the potential for developing medicinal herb-derived and food plant-derived prophylactic agents directed at neurological, metabolic, cardiovascular and psychiatric disorders abounds. Oligonol is a novel technology product emanating from the oligomerization of polyphenols, typically proanthocyanidin from a variety of fruits (grapes, apples, persimmons etc.) that has optimized bioavailability. It is an optimized phenolic product containing catechin-type monomers and oligomeric proanthocyanidins, the easily absorbed forms. Typically the constituents of Oligonol are 15-20% monomers, 8-12% dimers and 5-10% trimers. Supplementation of mice with Oligonol prior to the administration of ferric-nitrilotriacetic complex (a Fenton chemistry model) significantly reduced the extent of lipid peroxidation in the kidney, brain and liver. Oligonol triggers apoptosis in the MCF-7 and MDA-MB-231 breast cancer cells through modulation of the pro-apoptotic Bcl-2 family of proteins and the MEK/ERK signaling pathway, an observation suggesting its important chemopreventive effects. The senescence-accelerated strain of mice (SAM) are models of senescence acceleration and geriatric disorders which exhibit learning and memory deficits and enhanced production or defective control of oxidative stress leading.  相似文献   
7.

Background

The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10) in brain tissue of multiple system atrophy (MSA) patients differ from those in elderly controls and in patients with other neurodegenerative diseases.

Methods

Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA) type, 6 striatonigral degeneration (SND) type, and 5 mixed type] was used for this study. Elderly controls (n = 37) as well as idiopathic Parkinson''s disease (n = 7), dementia with Lewy bodies (n = 20), corticobasal degeneration (n = 15) and cerebellar ataxia (n = 18) patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography.

Results

We detected a statistically significant decrease (by 3–5%) in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001), specifically in OPCA (P = 0.001) and mixed cases (P = 0.005), when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001), idiopathic Parkinson''s disease (P<0.001), corticobasal degeneration (P<0.001), and cerebellar ataxia (P = 0.001)].

Conclusion

Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号