首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2001年   4篇
  2000年   2篇
  1989年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
Realized heritabilities were estimated for the character of phenthoate resistance in two local strains of the diamond-back moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae), by performing artificial laboratory selection for resistance and susceptibility to phenthoate. Heritability estimates indicated that such traits are moderately heritable ( 2=0.42 and 0.41 in the resistant selection and 2=0.31 and 0.21 in the susceptible selection), and give an experimental basis accounting for rapid evolutionary changes of phenthoate resistance observed in field populations of this insect.The observed changes in variances of phenthoate susceptibility are discussed in relation to the additive genetic variance eliminated by directional selection. The explanation stresses the importance on the underlying genetic system.
Résumé L'héritabilité de la résistance au phenthoate obtenue chez deux souches locales de P. xylostella L. (Lep.; Yponomeutidae) a été calculée en procédant au laboratoire à des sélections artificielles pour la résistance et pour la sensibilité à cet insecticide. Les calculs de l'héritabilité ont montré que de tels caractères sont moyennement héritables ( 2=0,42 et 0,41 lors de la sélection pour la résistance, et 2=0,31 et 0,21 lors de la sélection pour la sensibilité), et ont fourni la base expérimentale rendant compte des changements évolutifs rapides observés pour la résistance au phenthoate chez des populations naturelles de cet insecte.Les changements observés de la variance de la sensibilité au phenthoate sont discutés en fonction de la variance génétique additive éliminée par la sélection orientée. L'explication insiste sur l'importance du système génétique souligné.
  相似文献   
2.
The molecular mechanism of ethylenediaminetetraacetic acid (EDTA)-induced membrane destabilization has been studied using a combination of four biophysical techniques on artificial lipid membranes. Data from Langmuir film balance and epifluorescence microscopy revealed the fluidization and expansion effect of EDTA on phase behavior of monolayers of either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or mixtures of DPPC and metal-chelating lipids, such as N^a,N^a-Bis[carboxymethyl]-N^ε [(dioctadecylamino)succinyl]-L-lysine or 1,2-dioleoyl-sn-glycero-3-[N-(5-amino- 1 -carboxypentyl iminodiacetic acid) succinyl]. A plausible explanation could be drawn from the electrostatic interaction between negatively charged groups of EDTA and the positively charged choline head group of DPPC. Intercalation of EDTA into the lipid membrane induced membrane curvature as elucidated by atomic force microscopy. Growth in size and shape of the membrane protrusion was found to be time-dependent upon exposure to EDTA. Further loss of material from the lipid membrane surface was monitored in real time using a quartz crystal microbalance. This indicates membrane restabilization by exclusion of the protrusions from the surface. Loss of lipid components facilitates membrane instability, leading to membrane permeabilization and lysis.  相似文献   
3.
Membrane-based bioanalytical devices for metal determination using green fluorescent protein as the sensor molecule may be a useful future biomimetic material. However, in order to develop such a device, it is necessary first to understand the interaction of the protein with lipid membranes. Thus we have investigated the interaction between chimeric cadmium-binding green fluorescent proteins (CdBPGFPs) and lipid monolayers, using a film-balance technique complemented with epifluorescence microscopy. The binding avidity was monitored from the surface pressure vs. area isotherms or from the measured increase in the lateral pressure upon injection of the chimeric CdBPGFPs beneath the lipid monolayer. Increased fluidization as well as expansion of the surface area were shown to depend on the concentration of the CdBPGFPs. The kinetics of the protein-induced increase in lateral pressure was found to be biphasic. The chimeric CdBPGFPs possessed high affinity to the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer with a dissociation constant of Kd=10–8M. Epifluorescence measurements showed that this affinity is due to the presence of the Cd-binding peptide, which caused the GFP to incorporate preferentially to the liquid phase and defect part of the rigid domain at low interfacial pressure. At high compression, the Cd-binding peptide could neither incorporate nor remain in the lipid core. However, specific orientation of the chimeric CdBPGFPs underneath the air–water interface was achieved, even under high surface pressure, when the proteins were applied to the metal-chelating lipid-containing surfaces. This specific binding could be controlled reversibly by the addition of metal ions or metal chelator. The reversible binding of the chimeric CdBPGFPs to metal-chelating lipids provided a potential approach for immobilization, orientation and lateral organization of a protein at the membrane interface. Furthermore, the feasibility of applying the chelator lipids for the codetermination of metal ions with specific ligands was also revealed. Our finding clearly demonstrates that a strong interaction, particularly with fluid lipid domains, could potentially be used for sensor development in the future.Abbreviations GFP green fluorescent protein - CdBPGFPs cadmium-binding green fluorescent protein - DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphocholine - AAS atomic absorption spectrometry - Cd2+ cadmium (II) - Zn2+ zinc (II) - Cu2+ copper (II) - Ni2+ nickel (II) - E. coli Escherichia coli - NTA-DOGS 1,2-dioleoyl-sn-glycero-3-(N-(5-amino-1-carboxypentyl iminodiacetic acid) succinyl) - His6GFP hexahistidine green fluorescent protein - CdBP4GFP four-repeat cadmium-binding peptide green fluorescent protein - His6CdBP4GFP hexahistidine four-repeat cadmium-binding peptide green fluorescent protein - IMAC immobilized-metal-affinity chromatography - PBS phosphate-buffered saline - mN/m millinewton per metre - le liquid expanded - lc liquid condensed - PE phosphatidyl ethanolamine - PI phosphatidyl inositol - NTA nitrilotriacetic acid - EDTA ethylenediamine tetraacetic acid - RESA ring-infected erythrocyte surface antigen - CdBP cadmium-binding peptide  相似文献   
4.
A pCb plasmid encoding a beta-lactamase from Haemophilus ducreyi was transferred to Escherichia coli, purified, and characterized. The beta-lactamase could be isolated from a culture filtrate and further purified by ammonium sulfate and chelating Sepharose fast flow loaded with Zn(2+). The purified enzyme resulted in a major band at approximately 30-kDa on SDS-PAGE and its pI was determined to be 5.4. The beta-lactamase could hydrolyze both penicillin antibiotics including ampicillin, benzylpenicillin, and carbenicillin as well as cephalosporin antibiotics including nitrocefin, cephalothin, cephaloridine, and cefoperazone. However, benzylpenicillin was the best substrate. The enzyme activity was inhibited by clavulanic acid but not by boric acid, cefotaxime, ethylenediaminetetraacetic acid, or phenylmethylsulfonyl fluoride. The sequence of the beta-lactamase gene was also determined. It confirmed that the enzyme belonged to a class A beta-lactamase which had 99% identity to the ampicillin resistance transposon Tn3 of pBR322. Two nucleotides were different between the E. coli (Tn3) and H. ducreyi (pCb) genes that affected the amino-acid sequence. The valine at position 82 (ABL 84) was changed to isoleucine and the alanine at position 182 (ABL 184) was changed to valine. Genetic homogeneity among beta-lactamases is remarkable. Amino acid sequencing of some beta-lactamases has shown that substitution of only a few amino acids in the bla gene leads to high-level resistance against specific cephalosporins.  相似文献   
5.
6.
Epifluorescence microscopy as well as atomic force microscopy was successfully applied to explore the orientation and lateral organization of a group of chimeric green fluorescent proteins (GFPs) on lipid membrane. Incorporation of the chimeric GFP carrying Cd-binding region (His6CdBP4GFP) to the fluid phase of DPPC monolayer resulted in a strong fluorescence intensity at the air-water interface. Meanwhile, non-specific adsorption of the GFP having hexahistidine (His6GFP) led to the perturbation of the protein structure in which very low fluorescence was observed. Specific binding of both of the chimeric GFPs to immobilized zinc ions underneath the metal-chelating lipid membrane was revealed. This specific binding could be reversibly controlled by addition of metal ions or metal chelator. Binding of the chimeric GFPs to the metal-chelating lipid membrane was proven to be the end-on orientation while the side-on adsorption was contrarily noted in the absence of metal ions. Increase of lateral mobility owing to the fluidization effect on the chelating lipid membrane subsequently facilitated crystal formation. All these findings have opened up a potential approach for a specific orientation of immobilization of protein at the membrane interface. This could have accounted for a better opportunity of sensor development.  相似文献   
7.
Superoxide dismutase (SOD) activities of various metallobacitracin complexes were evaluated using the riboflavin-methionine-nitro blue tetrazolium assay. The radical scavenging activity of various metallobacitracin complexes was shown to be higher than those of the negative controls, e.g., free transition metal ions and metal-free bacitracin. The SOD activity of the complex was found to be in the order of Mn(II)>Cu(II)>Co(II)>Ni(II). Furthermore, the effect of bacitracin and their complexation to metals on various microorganisms was assessed by antibiotic susceptibility testing. Moreover, molecular modeling and quantum chemical calculation of the metallobacitracin complex was performed to evaluate the correlation of electrostatic charge of transition metal ions on the SOD activity.  相似文献   
8.
The use of molecularly imprinted polymers (MIPs) in chemical and bioanalytical applications has been gaining in interest in recent years. Compared to their biological receptor counterparts, MIPs are easy to prepare, have long shelf stability and can be used under a variety of harsh conditions. The majority of MIPs currently used are produced by traditional free radical polymerization. One drawback with the use of standard free radical initiators is that little control can be exerted over the chemical processes that form the final imprinted cavities. In this study we set out to investigate the application of controlled (living) free radical polymerization to the preparation of MIPs. This was exemplified by the synthesis of cholesterol-imprinted bulk polymers by nitroxide-mediated polymerization (NMP). A sacrificial covalent bond was employed to maintain imprinting fidelity at elevated temperature. Selective uptake of cholesterol from solutions in hexane was studied with imprinted polymers prepared under different conditions. The imprinted hydrolyzed MIP prepared by NMP displayed higher selective cholesterol binding than that prepared by a traditional radical polymerization.  相似文献   
9.
Neurochemical Research - Dexamethasone is an approved steroid for clinical use to activate or suppress cytokines, chemokines, inflammatory enzymes and adhesion molecules. It enters the brain,...  相似文献   
10.
A novel solvent-exposed analyte channel, generated by F165G substitution, on the surface of green fluorescent protein (designated His(6)GFPuv/F165G) was successfully discovered by the aid of molecular modeling software (PyMOL) in conjunction with site-directed mutagenesis. Regarding the high predictive performance of PyMOL, two pore-containing mutants namely His(6)GFPuv/H148G and His(6)GFPuv/H148G/F165G were also revealed. The pore sizes of F165G, H148G, and the double mutant H148G/F165G were in the order of 4, 4.5 and 5.5 A, respectively. These mutants were subjected to further investigation on the effect of small analytes (e.g. metal ions and hydrogen peroxide) as elucidated by fluorescence quenching experiments. Results revealed that the F165G mutant exhibited the highest metal sensitivity at physiological pH. Meanwhile, the other 2 mutants lacking histidine at position 148 had lower sensitivity against Zn(2+) and Cu(2+) than those of the template protein (His(6)GFPuv). Hence, a significant role of this histidine residue in mediating metal transfer toward the GFP chromophore was proposed and evidently demonstrated by testing in acidic condition. Results revealed that at pH 6.5 the order of metal sensitivity was found to be inverted whereby the H148G/F165G became the most sensitive mutant. The dissociation constants (K(d)) to metal ions were in the order of 4.88 x 10(-6) M, 16.67 x 10(-6) M, 25 x 10(-6) M, and 33.33 x 10(-6) M for His(6)GFPuv/F165G, His(6)GFPuv, His(6)GFPuv/H148G/F165G and His(6)GFPuv/H148G, respectively. Sensitivity against hydrogen peroxide was in the order of H148G/F165G > H148G > F165G indicating the crucial role of pore diameters. However, it should be mentioned that H148G substitution caused a markedly decrease in pH- and thermo-stability. Taken together, our findings rendered the novel pore of GFP as formed by F165G substitution to be a high impact channel without adversely affecting the intrinsic fluorescent properties. This opens up a great potential of using F165G mutant in enhancing the sensitivity of GFP in future development of biosensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号