首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   4篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2013年   6篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1982年   2篇
  1980年   1篇
  1970年   1篇
  1965年   1篇
  1956年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
1.
2.
3.
Allyl isothiocyanate (AITC) is a dietary component with possible anticancer effects, though much information about AITC and cancer has been obtained from cell studies. To investigate the effect of AITC on DNA integrity in vivo, a crossover study was conducted. Adults (n= 46) consumed AITC, AITC-rich vegetables [mustard and cabbage (M/C)] or a control treatment with a controlled diet for 10 days each. On day 11, volunteers provided blood and urine before and after consuming treatments. Volunteers were characterized for genotype for GSTM1 and GSTT1 (glutathione S-transferases) and XPD (DNA repair). DNA integrity in peripheral blood mononuclear cells was assessed by single-cell gel electrophoresis. Urine was analyzed for 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) and creatinine. Ten-day intake of neither AITC nor M/C resulted in statistically significant differences in DNA strand breaks [least squares mean (LSmean) % DNA in tail±S.E.M.: 4.8±0.6 for control, 5.7±0.7 for AITC, 5.3±0.6 for M/C] or urinary 8-oxodG (LSmean μg 8-oxodG/g creatinine±S.E.M.: 2.95±0.09 for control, 2.88±0.09 for AITC, 3.06±0.09 for M/C). Both AITC and M/C increased DNA strand breaks 3 h postconsumption (LSmean % DNA in tail±S.E.M.: 3.2±0.7 for control, 8.3±1.7 for AITC, 8.0±1.7 for M/C), and this difference disappeared at 6 h (4.2±0.9 for control, 5.7±1.2 for AITC, 5.5±1.2 for M/C). Genotypes for GSTM1, GSTT1 and XPD were not associated with treatment effects. In summary, DNA damage appeared to be induced in the short term by AITC and AITC-rich products, but that damage disappeared quickly, and neither AITC nor AITC-rich products affected DNA base excision repair.  相似文献   
4.

Background

In recent years large bibliographic databases have made much of the published literature of biology available for searches. However, the capabilities of the search engines integrated into these databases for text-based bibliographic searches are limited. To enable searches that deliver the results expected by comparative anatomists, an underlying logical structure known as an ontology is required.

Development and Testing of the Ontology

Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repository for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). We compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar.

Results and Significance

Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.  相似文献   
5.
Arboreal primates actively navigate a complex thermal environment that exhibits spatial, daily, and seasonal temperature changes. Thus, temperature measurements from stationary recording devices in or near a forest likely do not reflect the thermal microenvironments that primates actually experience. To better understand the thermal variation primates encounter, we attached automated temperature loggers to anklets worn by free-ranging mantled howling monkeys (Alouatta palliata) to record near-animal ambient temperatures. We compared these measures to conventional, stationary temperature measurements taken from within the forest, in nearby open fields, and at a remote weather station 38.6 km from the field site. We also measured temperatures across vertical forest heights and assessed the effects of wind speed, solar radiation, rain, and vapor pressure on primate subcutaneous temperatures (collected via implanted loggers). Ambient temperatures at measurement sites commonly used by researchers differed from those experienced by animals. Moreover, these differences changed between seasons, indicating dynamic shifts in thermal environment occur through space and time. Temperatures increased with height in the forest, with statistically significant, albeit low magnitude, differences between vertical distances of one meter. Near-animal temperatures showed that monkeys selected relatively warmer microhabitats during nighttime temperature lows and relatively cooler microhabitats during the day. Lastly, the thermal variables wind speed, solar radiation, vapor pressure, and rain were statistically associated with primate subcutaneous temperatures. Our data indicate that the temperatures arboreal primates experience are not well reflected by stationary devices. Attaching automated temperature loggers to animals provides a useful tool for more directly assessing primate microhabitat use.  相似文献   
6.
The genus Cebus is one of the best extant models for examining the role of fallback foods in primate evolution. Cebus includes the tufted capuchins, which exhibit skeletal features for the exploitation of hard and tough foods. Paradoxically, these seemingly “specialized” taxa belong to the most ubiquitous group of closely related primates in South America, thriving in a range of different habitats. This appears to be a consequence of their ability to exploit obdurate fallback foods. Here we compare the toughness of foods exploited by two tufted capuchin species at two ecologically distinct sites; C. apella in a tropical rainforest, and C. libidinosus in a cerrado forest. We include dietary data for one untufted species (C. olivaceus) to assess the degree of difference between the tufted species. These data, along with information on skeletal morphology, are used to address whether or not a fallback foraging species exhibits a given suite of morphological and behavioral attributes, regardless of habitat. Both tufted species ingest and masticate a number of exceedingly tough plant tissues that appear to be used as fallback resources, however, C. libidinosus has the toughest diet both in terms of median and maximal values. Morphologically, C. libidinosus is intermediate in absolute symphyseal and mandibular measurements, and in measures of postcranial robusticity, but exhibits a higher intermembral index than C. apella. We propose that this incongruence between dietary toughness and skeletal morphology is the consequence of C. libidinosus' use of tools while on the ground for the exploitation of fallback foods. Am J Phys Anthropol 140:687–699, 2009. © 2009 Wiley-Liss, Inc.  相似文献   
7.
The primate masticatory apparatus (MA) is a functionally integrated set of features, each of which performs important functions in biting, ingestive, and chewing behaviors. A comparison of morphological covariance structure among species for these MA features will help us to further understand the evolutionary history of this region. In this exploratory analysis, the covariance structure of the MA is compared across seven galago species to investigate 1) whether there are differences in covariance structure in this region, and 2) if so, how has this covariation changed with respect to size, MA form, diet, and/or phylogeny? Ten measurements of the MA functionally related to bite force production and load resistance were obtained from 218 adults of seven galago species. Correlation matrices were generated for these 10 dimensions and compared among species via matrix correlations and Mantel tests. Subsequently, pairwise covariance disparity in the MA was estimated as a measure of difference in covariance structure between species. Covariance disparity estimates were correlated with pairwise distances related to differences in body size, MA size and shape, genetic distance (based on cytochrome‐b sequences) and percentage of dietary foods to determine whether one or more of these factors is linked to differences in covariance structure. Galagos differ in MA covariance structure. Body size appears to be a major factor correlated with differences in covariance structure among galagos. The largest galago species, Otolemur crassicaudatus, exhibits large differences in body mass and covariance structure relative to other galagos, and thus plays a primary role in creating this association. MA size and shape do not correlate with covariance structure when body mass is held constant. Diet also shows no association. Genetic distance is significantly negatively correlated with covariance disparity when body mass is held constant, but this correlation appears to be a function of the small body size and large genetic distance for Galagoides demidoff. These exploratory results indicate that changing body size may have been a key factor in the evolution of the galago MA. Am. J. Primatol. 69:46–58, 2007. © 2006 Wiley‐Liss, Inc.  相似文献   
8.
The photoluminescence (PL) and electrogenerated chemiluminescence (ECL) of [H2(MPy3,4DMPP)Ru(bpy)2Cl](PF6), where H2MPy3,4DMPP = meso-tris-3,4-dimethoxyphenyl-mono-(4-pyridyl)porphyrin and bpy = 2,2′-bipyridine, are reported in acetonitrile. The compound has a complex absorbance spectrum with bands characteristic of both the porphyrin and ruthenium moieties. PL emission maxim are observed at 655 nm when excited at the maximum absorption intensity corresponding to the porphyrin Soret π → π band, and around 600 nm when excited at wavelengths corresponding to Ru(dπ)-bpy (π) MLCT transition. The photoluminescence efficiency (?em) of the 655 nm emission is 0.039 and that of the free porphyrin is 0.69 compared to at 0.042.[H2(MPy3,4DMPP)Ru(bpy)2Cl](PF6) displays complex electrochemical behavior, with one electrochemically reversible RuII-RuIII oxidation and two quasi-reversible waves at more cathodic potentials corresponding to the porphyrin moiety. Oxidative ECL was generated using the coreactant tri-n-propylamine (TPrA). ECL efficiencies (?ecl) were 0.14 for [H2(MPy3,4DMPP)Ru(bpy)2Cl]+ and 0.099 for H2MPy3,4DMPP using as the standard (?ecl = 1). ECL intensity was linear with respect to concentration from 1 to 0.001 μM.The ECL intensity peaks at potentials corresponding to oxidation both the ruthenium and porphyrin moieties as well as TPrA, indicating that multiple pathways for formation of the excited state are possible. However, an ECL spectrum shows a band similar in energy and shape to that of the Soret emission (655 nm for the PL and 656 nm for the ECL, respectively), indicating the same excited state is formed in each experiment.  相似文献   
9.
10.
Unlike other mammals, odontocetes and mysticetes have highly derived craniofacial bones. A growth process referred to as “telescoping” is partly responsible for this morphology. Here, we explore how changes in facial morphology during fetal growth relate to differences in telescoping between the adult odontocete Stenella attenuata and the mysticete Balaena mysticetus. We conclude that in both Stenella and Balaena head size increases allometrically. Similarly, odontocete nasal length and mysticete mouth size have strong positive allometry compared to total body length. However, the differences between odontocetes and mysticetes in telescoping are not directly associated with their fetal growth patterns. Our results suggest that cranial changes related to echolocation and feeding between odontocetes and mysticetes, respectively, begin during ontogeny before telescoping is initiated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号