首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   42篇
  国内免费   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   12篇
  2014年   16篇
  2013年   10篇
  2012年   16篇
  2011年   11篇
  2010年   10篇
  2009年   6篇
  2008年   5篇
  2007年   9篇
  2006年   11篇
  2005年   13篇
  2004年   9篇
  2003年   9篇
  2002年   6篇
  2001年   3篇
  2000年   9篇
  1999年   2篇
  1998年   3篇
  1996年   4篇
  1994年   10篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   6篇
  1989年   9篇
  1988年   3篇
  1987年   7篇
  1985年   4篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1958年   1篇
  1955年   3篇
  1954年   1篇
  1951年   1篇
  1949年   1篇
  1948年   1篇
  1944年   1篇
  1942年   1篇
排序方式: 共有258条查询结果,搜索用时 437 毫秒
1.
2.
We have recently purified and partially sequenced a new T cell-derived lymphokine with growth factor activity for B cell hybridomas and plasmacytomas, which we named interleukin HP1 (HP1). Here we show that, in response to viral infection or after treatment with poly(rI).poly(rC), L cells produce a factor that is capable of supporting the in vitro growth and survival of HP1-dependent cell lines. Serologic and structural evidence is presented in favor of the identity between the fibroblast factor and HP1, demonstrating that non-T cells can make HP1-related molecules.  相似文献   
3.
Alterations in water content and total tissue Na+ and Mg++ of rat spinal cord tissue were followed over time after a 100 g-cm impact injury to the T-9 spinal cord segment. Rats subjected to laminectomy but not trauma served as controls. In the injured segment there was a progressive increase in water content with increased Na+ and decreased Mg++ at 1 hour and 24 hours after trauma. At seven days, water and Na+ content remained elevated, whereas Mg++ levels had returned to preinjury baseline values. Because of its important role in many metabolic and physiological regulatory processes the early decline in Mg++ concentration after trauma may contribute to the development of secondary tissue damage after spinal cord injury.  相似文献   
4.
5.
An essential step in the life cycle of the human immunodeficiency virus (HIV) is integration of a DNA copy of the viral RNA into the genome of the infected cell. We show here that this step can be faithfully accomplished in vitro by the enzymatic machinery of another retrovirus, Moloney murine leukemia virus (MoMLV). Mini-HIV substrates, which are linearized plasmids with long terminal repeat sequences at their ends, were incubated with cytoplasmic extracts of MoMLV-infected NIH 3T3 cells and target DNA. The MoMLV integration apparatus carried out integration of the mini-HIV substrates correctly; the terminal nucleotides of the viral substrate were removed, and a 4-base-pair duplication of the target DNA flanked the inserted viral DNA (C. Shoemaker, S. P. Goff, E. Gilboa, M. Paskind, S. W. Mitra, and D. Baltimore, Proc. Natl. Acad. Sci. USA 77:3932-3936, 1980). Our experiments show that the substrate sequence requirements for integration in vitro were limited to a few nucleotides, as the similarity between HIV and MoMLV long terminal repeat ends is minimal.  相似文献   
6.
Abstract: Several studies have reported declines in brain total and free magnesium concentration after a traumatic insult to the CNS. Although the evidence suggests that this magnesium decline is associated with eventual neurologic outcome after trauma, the duration of free magnesium decline and its impact on related bioenergetic variables are relatively unknown. The present study has therefore used phosphorus magnetic resonance spectroscopy to determine the length of time that free magnesium remains suppressed after traumatic brain injury in rats. Immediately after the traumatic event, brain intracellular free magnesium declined to <60% of preinjury values and remained significantly depressed (50 ± 8%; p < 0.001) for 5 days before recovering to preinjury levels by day 8. Cytosolic phosphorylation ratio and mitochondrial oxidative capacity also significantly decreased ( p = 0.008) and increased ( p = 0.002), respectively, after trauma. However, unlike the time of maximum magnesium change, the maximum changes in these bioenergetic variables occurred at 16–24 h after trauma and thereafter remained stable until after the magnesium had recovered. We conclude that free magnesium decline after trauma precedes changes in bioenergetic variables. Furthermore, therapies targeted at reestablishing magnesium homeostasis after trauma may require administration over a 1-week period.  相似文献   
7.
Structure of the rat cytomegalovirus genome termini.   总被引:3,自引:2,他引:1       下载免费PDF全文
C Vink  E Beuken    C A Bruggeman 《Journal of virology》1996,70(8):5221-5229
The lytic replication cycle of herpesviruses can be divided into the following three steps: (i) circularization, in which, after infection, the termini of the linear double-stranded viral genome are fused; (ii) replication, in which the circular DNA serves as template for DNA replication, which generates large DNA concatemers; and (iii) maturation, in which the concatemeric viral DNA is processed into unit-length genomes, which are packaged into capsids. Sequences at the termini of the linear virion DNA are thought to play a key role in both genome circularization and maturation. To investigate the mechanism of these processes in the replication of rat cytomegalovirus (RCMV), we cloned, sequenced, and characterized the genomic termini of this betaherpesvirus. Both RCMV genomic termini were found to contain a single copy of a direct terminal repeat (TR). The TR sequence is 504 bp in length, has a high GC content (76%), and is not repeated at internal sites within the RCMV genome. The TR comprises several small internal direct repeats as well as two sequences which are homologous to herpesvirus pac-1 and pac-2 sites, respectively. The organization of the RCMV TR is unique among cytomegaloviruses with respect to the position of the pac sequences: pac-1 is located near the left end of the TR, whereas pac-2 is present near the right end. Both RCMV DNA termini carry an extension of a single nucleotide at the 3' end. Since these nucleotides are complementary, circularization of the viral genome is likely to occur via a simple ligation reaction.  相似文献   
8.
The integrase (IN) protein of the human immunodeficiency virus (HIV) mediates two distinct reactions: (i) specific removal of two nucleotides from the 3' ends of the viral DNA and (ii) integration of the viral DNA into target DNA. Although IN discriminates between specific (viral) DNA and nonspecific DNA in physical in vitro assays, a sequence-specific DNA-binding domain could not be identified in the protein. A nonspecific DNA-binding domain, however, was found at the C terminus of the protein. We examined the DNA-binding characteristics of HIV-1 IN, and found that a stable complex of IN and viral DNA is formed in the presence of Mn2+. The IN-viral DNA complex is resistant to challenge by an excess of competitor DNA. Stable binding of IN to the viral DNA requires that the protein contains an intact N-terminal domain and active site (in the central region of the protein), in addition to the C-terminal DNA-binding domain.  相似文献   
9.
This study describes composition and localization of several substructures of the synaptonemal complex (SC) using different techniques. The techniques which were used were surface spreading, critical point drying of isolated SCs, and sectioning of Lowicryl embedded testis material. The lateral elements (LEs) of the SC appear to be composed of three lateral substructures: two morphologically identical major strands and a third strand which is considerably thinner. The thinner strand is localized on the inner side of the two major strands of the lateral element. In late pachytene/early diplotene stages when the SC starts to disintegrate more than three strands can be observed in the LEs. A model is presented and the function of the different substructures is speculated upon.  相似文献   
10.
Single-particle tracking is an important technique in the life sciences to understand the kinetics of biomolecules. The analysis of apparent diffusion coefficients in vivo, for example, enables researchers to determine whether biomolecules are moving alone, as part of a larger complex, or are bound to large cellular components such as the membrane or chromosomal DNA. A remaining challenge has been to retrieve quantitative kinetic models, especially for molecules that rapidly switch between different diffusional states. Here, we present analytical diffusion distribution analysis (anaDDA), a framework that allows for extracting transition rates from distributions of apparent diffusion coefficients calculated from short trajectories that feature less than 10 localizations per track. Under the assumption that the system is Markovian and diffusion is purely Brownian, we show that theoretically predicted distributions accurately match simulated distributions and that anaDDA outperforms existing methods to retrieve kinetics, especially in the fast regime of 0.1–10 transitions per imaging frame. AnaDDA does account for the effects of confinement and tracking window boundaries. Furthermore, we added the option to perform global fitting of data acquired at different frame times to allow complex models with multiple states to be fitted confidently. Previously, we have started to develop anaDDA to investigate the target search of CRISPR-Cas complexes. In this work, we have optimized the algorithms and reanalyzed experimental data of DNA polymerase I diffusing in live Escherichia coli. We found that long-lived DNA interaction by DNA polymerase are more abundant upon DNA damage, suggesting roles in DNA repair. We further revealed and quantified fast DNA probing interactions that last shorter than 10 ms. AnaDDA pushes the boundaries of the timescale of interactions that can be probed with single-particle tracking and is a mathematically rigorous framework that can be further expanded to extract detailed information about the behavior of biomolecules in living cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号