首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2018年   1篇
  2017年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The crystalline states of cimetidine and piroxicam, when coprecipitated from solvents containing 1:1 mole ratio, were transformed to amorphous states as observed using powder X-ray diffraction (PXRD). Amorphous forms of drugs generally exhibit higher water solubility than crystalline forms. It is therefore interesting to investigate the interactions that cause the transformation of both the crystalline drugs. Intermolecular interactions between the drugs were determined using Fourier-transform infrared spectroscopy (FTIR) and solid-state 13C CP/MAS NMR. Molecular dynamic (MD) simulation was performed for the first time for this type of study to indicate the specific groups involved in the interactions based on radial distribution function (RDF) analyses. RDF is a useful tool to describe the average density of atoms at a distance from a specified atom. FTIR spectra revealed a shift of the C≡N stretching band of cimetidine. The 13C CP/MAS NMR spectra indicated downfield shifts of C11, C15 and C7 of piroxicam. RDF analyses indicated that intermolecular interactions occurred between the amide oxygen atom as well as the pyridyl nitrogen of piroxicam and H-N3 of cimetidine. The hydrogen atom (O–H) at C7 interacts with the N1 of cimetidine. Since the MD simulation results are consistent with, and complementary to the experimental analyses, such simulations could provide a novel strategy for investigating specific interacting groups of drugs in coprecipitates, or in amorphous mixtures.  相似文献   
2.
We have recently demonstrated that coprecipitation of cimetidine (C) and piroxicam (P) at a mole ratio of 1:1 results in the transformation of the crystalline forms of both drugs to an amorphous state. In this study, coprecipitates and physical mixtures of cimetidine and piroxicam were further investigated at C/P mole ratios of 1:10, 1:5, 1:4, 1:2, 10:1, 20:1, 30:1, 40:1, and 52.5:1, the latter being the composition of a clinically used dosage. The physicochemical properties of these samples were examined using X-ray diffraction and Fourier transform infrared spectroscopy. Additionally, dissolution of piroxicam in the samples at C/P mole ratios of 10:1, 20:1, 30:1, 40:1, and 52.5:1 was investigated at pH 1.2 and pH 4. In coprecipitates with C/P mole ratios of 10:1, 20:1, 30:1, and 40:1, crystalline forms of both drugs were transformed to amorphous states. A mixture of an amorphous state and cimetidine crystalline form A was observed for the coprecipitate with a C/P mole ratio of 52.5:1. For the coprecipitates with C/P mole ratios of 1:2, 1:4, 1:5, and 1:10, cimetidine form A was transformed to form C, whereas piroxicam form II was modified to form I. It is interesting that small molecules, instead of polymers or solvents, can cause such crystal structure transformations. The dissolution of piroxicam at pH 4 is lower than that at pH 1.2. Additionally, the coprecipitates and physical mixtures with C/P mole ratios of 10:1, 20:1, 30:1, 40:1, and 52.5:1 demonstrate substantially higher dissolution of piroxicam compared to that of drug alone.  相似文献   
3.
Bcl-2 is a key apoptosis regulatory protein of the mitochondrial death pathway whose function is dependent on its expression levels. Although Bcl-2 expression is controlled by various mechanisms, post-translational modifications, such as ubiquitination and proteasomal degradation, have emerged as important regulators of Bcl-2 function. However, the underlying mechanisms of this regulation are unclear. We report here that Bcl-2 undergoes S-nitrosylation by endogenous nitric oxide (NO) in response to multiple apoptotic mediators and that this modification inhibits ubiquitin-proteasomal degradation of Bcl-2. Inhibition of NO production by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and by NO synthase inhibitor aminoguanidine effectively inhibited S-nitrosylation of Bcl-2, increased its ubiquitination, and promoted apoptotic cell death induced by chromium (VI). In contrast, the NO donors dipropylenetriamine NONOate and sodium nitroprusside showed opposite effects. The effect of NO on Bcl-2 stability was shown to be independent of its dephosphorylation. Mutational analysis of Bcl-2 further showed that the two cysteine residues of Bcl-2 (Cys158 and Cys229) are important in the S-nitrosylation process and that mutations of these cysteines completely inhibited Bcl-2 S-nitrosylation. Treatment of the cells with other stress inducers, including Fas ligand and buthionine sulfoxide, also induced Bcl-2 S-nitrosylation, suggesting that this is a general phenomenon that regulates Bcl-2 stability and function under various stress conditions. These findings indicate a novel function of NO and its regulation of Bcl-2, which provides a key mechanism for the control of apoptotic cell death and cancer development.  相似文献   
4.
Novel hydrogels of methylcellulose (MC) with gallic acid (GA) and NaCl were developed for an in situ gel-forming delivery system. Plain MC and GA/NaCl/MC were characterized using micro-differential scanning calorimetry (micro-DSC), rheological and turbidity methods. The gelation temperatures of MC were reduced to body temperature with adding GA/NaCl. GA and NaCl caused slightly different effects on the gelation/degelation temperatures during heating/cooling, respectively, based on the different sensitivities of these three techniques. The gelation mechanism was investigated by UV spectrophotometry, and the hydrophobic interaction between the aromatic ring of GA and MC was verified. The NaCl/MC hydrogel had smaller micropores than GA/MC and MC, indicating a greater cross-linked density. Doxycycline (DX) was loaded into the systems and demonstrated a synergistic effect of DX/GA. Both GA and DX exhibited a sustained release. The hydrogel of GA/4NaCl/MC could be potentially used for the in situ delivery of DX for deep wound healing.  相似文献   
5.
Our previous study demonstrated that mixtures of tamarind seed xyloglucan (TSX) with appropriate concentrations of eriochrome black T (EBT) produced a gel that could be of benefit for medical use. Here, the sol-gel systems of various fresh and aged mixtures were further investigated using rheological measurements. The nanostructural changes of EBT-TSX sol-gel phases were analyzed using SAXS. The interactions between EBT and TSX in the sol and gel states were examined using ATR-FTIR. SAXS data analysis demonstrated that the mixture containing lower concentration of EBT formed rod-like structures and that with higher concentrations of EBT produced flat particles. The sizes of the TSX structures from the aged mixtures in the gel stage were larger than those from the same mixtures in the sol state. ATR-FTIR spectral changes revealed that the azo and sulfonic acid groups of EBT interacted with the TSX, and the characteristic spectrum of the sulfonic acid group of EBT could discriminate between the sol and gel state of the EBT-TSX systems. The interactions between EBT and TSX may cause conformational changes to TSX and facilitate the sol-gel transition or formation of a gel.  相似文献   
6.
7.
8.
Thermosensitive hydrogels are of great interest for in situ gelling drug delivery. The thermosensitive vehicle with a gelation temperature in a range of 30–36°C would be convenient to be injected as liquid and transform into gel after injection. To prepare novel hydrogels gelling near body temperature, the gelation temperature of poloxamer 407 (PX) were tailored by mixing PX with poly(acrylic acid) (PAA). The gelation behaviors of PX/PAA systems as well as the interaction mechanism were investigated by tube inversion, viscoelastic, shear viscosity, DSC, SEM, and FTIR studies. The gelation temperature of the plain PX solutions at high concentration of 18, 20, and 22% (w/w) gelled at temperature below 28°C, which is out of the suitable temperature range. Mixing PX with PAA to obtain 18 and 20% (w/w) PX with 1% (w/w) PAA increased the gelation temperature to the desired temperature range of 30–36°C. The intermolecular entanglements and hydrogen bonds between PX and PAA may be responsible for the modulation of the gelation features of PX. The mixtures behaved low viscosity liquid at room temperature with shear thinning behavior enabling their injectability and rapidly gelled at body temperature. The gel strength increased, while the pore size decreased with increasing PX concentration. Metronidazole, an antibiotic used for periodontitis, was incorporated into the matrices, and the drug did not hinder their gelling ability. The gels showed the sustained drug release characteristic. The thermosensitive PX/PAA hydrogel could be a promising injectable in situ gelling system for periodontal drug delivery.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号