排序方式: 共有24条查询结果,搜索用时 0 毫秒
1.
Tobias Kürschner;Cédric Scherer;Viktoriia Radchuk;Niels Blaum;Stephanie Kramer-Schadt; 《Ecology and evolution》2024,14(2):e11065
Throughout the last decades, the emergence of zoonotic diseases and the frequency of disease outbreaks have increased substantially, fuelled by habitat encroachment and vectors overlapping with more hosts due to global change. The virulence of pathogens is one key trait for successful invasion. In order to understand how global change drivers such as habitat homogenization and climate change drive pathogen virulence evolution, we adapted an established individual-based model of host–pathogen dynamics. Our model simulates a population of social hosts affected by a directly transmitted evolving pathogen in a dynamic landscape. Pathogen virulence evolution results in multiple strains in the model that differ in their transmission capability and lethality. We represent the effects of global change by simulating environmental changes both in time (resource asynchrony) and space (homogenization). We found an increase in pathogenic virulence and a shift in strain dominance with increasing landscape homogenization. Our model further indicated that lower virulence is dominant in fragmented landscapes, although pulses of highly virulent strains emerged under resource asynchrony. While all landscape scenarios favoured co-occurrence of low- and high-virulent strains, the high-virulence strains capitalized on the possibility for transmission when host density increased and were likely to become dominant. With asynchrony likely to occur more often due to global change, our model showed that a subsequent evolution towards lower virulence could lead to some diseases becoming endemic in their host populations. 相似文献
2.
Sofia J. van Moorsel Elisa Thébault Viktoriia Radchuk Anita Narwani José M. Montoya Vasilis Dakos Mark Holmes Frederik De Laender Frank Pennekamp 《Global Change Biology》2023,29(5):1223-1238
Global change encompasses many co-occurring anthropogenic drivers, which can act synergistically or antagonistically on ecological systems. Predicting how different global change drivers simultaneously contribute to observed biodiversity change is a key challenge for ecology and conservation. However, we lack the mechanistic understanding of how multiple global change drivers influence the vital rates of multiple interacting species. We propose that reaction norms, the relationships between a driver and vital rates like growth, mortality, and consumption, provide insights to the underlying mechanisms of community responses to multiple drivers. Understanding how multiple drivers interact to affect demographic rates using a reaction-norm perspective can improve our ability to make predictions of interactions at higher levels of organization—that is, community and food web. Building on the framework of consumer–resource interactions and widely studied thermal performance curves, we illustrate how joint driver impacts can be scaled up from the population to the community level. A simple proof-of-concept model demonstrates how reaction norms of vital rates predict the prevalence of driver interactions at the community level. A literature search suggests that our proposed approach is not yet used in multiple driver research. We outline how realistic response surfaces (i.e., multidimensional reaction norms) can be inferred by parametric and nonparametric approaches. Response surfaces have the potential to strengthen our understanding of how multiple drivers affect communities as well as improve our ability to predict when interactive effects emerge, two of the major challenges of ecology today. 相似文献
3.
Camille Turlure Viktoriia Radchuk Michel Baguette Mark Meijrink Arnold van den Burg Michiel Wallis De Vries Gert‐Jan van Duinen 《Ecology and evolution》2013,3(2):244-254
The butterfly Boloria aquilonaris is a specialist of oligotrophic ecosystems. Population viability analysis predicted the species to be stable in Belgium and to collapse in the Netherlands with reduced host plant quality expected to drive species decline in the latter. We tested this hypothesis by rearing B. aquilonaris caterpillars from Belgian and Dutch sites on host plants (the cranberry, Vaccinium oxycoccos). Dutch plant quality was lower than Belgian one conferring lower caterpillar growth rate and survival. Reintroduction and/or supplementation may be necessary to ensure the viability of the species in the Netherlands, but some traits may have been selected solely in Dutch caterpillars to cope with gradual changes in host plant quality. To test this hypothesis, the performance of Belgian and Dutch caterpillars fed with plants from both countries were compared. Dutch caterpillars performed well on both plant qualities, whereas Belgian caterpillars could not switch to lower quality plants. This can be considered as an environmentally induced plastic response of caterpillars and/or a local adaptation to plant quality, which precludes the use of Belgian individuals as a unique solution for strengthening Dutch populations. More generally, these results stress that the relevance of local adaptation in selecting source populations for relocation may be as important as restoring habitat quality. 相似文献
4.
Vishnu Vijayakumar Yuhan Zhong Viktoriia Untilova Mounib Bahri Laurent Herrmann Laure Biniek Nicolas Leclerc Martin Brinkmann 《Liver Transplantation》2019,9(24)
Here, an effective design strategy of polymer thermoelectric materials based on structural control in doped polymer semiconductors is presented. The strategy is illustrated for two archetypical polythiophenes, e.g., poly(2,5‐bis(3‐dodecyl‐2‐thienyl)thieno[3,2‐b]thiophene) (C12‐PBTTT) and regioregular poly(3‐hexylthiophene) (P3HT). FeCl3 doping of aligned films results in charge conductivities up to 2 × 105 S cm?1 and metallic‐like thermopowers similar to iodine‐doped polyacetylene. The films are almost optically transparent and show strongly polarized near‐infrared polaronic bands (dichroic ratio >10). The comparative study of structure–property correlations in P3HT and C12‐PBTTT identifies three conditions to obtain conductivities beyond 105 S cm?1: i) achieve high in‐plane orientation of conjugated polymers with high persistence length; ii) ensure uniform chain oxidation of the polymer backbones by regular intercalation of dopant molecules in the polymer structure without disrupting alignment of π‐stacked layers; and iii) maintain a percolating nanomorphology along the chain direction. The highly anisotropic conducting polymer films are ideal model systems to investigate the correlations between thermopower S and charge conductivity σ. A scaling law S ∝ σ?1/4 prevails along the chain direction, but a different S ∝ ?ln(σ) relation is observed perpendicular to the chains, suggesting different charge transport mechanisms. The simultaneous increase of charge conductivity and thermopower along the chain direction results in a substantial improvement of thermoelectric power factors up to 2 mW m?1 K?2 in C12‐PBTTT. 相似文献
5.
Goncharov Alexey I. Levina Inna S. Shliapina Viktoriia L. Morozov Ivan A. Rubtsov Petr M. Zavarzin Igor V. Smirnova Olga V. Shchelkunova Tatiana A. 《Biochemistry. Biokhimii?a》2021,86(11):1446-1460
Biochemistry (Moscow) - Progesterone and its synthetic analogues act on cells through different types of receptors, affecting proliferation and apoptosis. These compounds exert their effect through... 相似文献
6.
Anatoly S. Karavaev Anatoly S. Borovik Ekaterina I. Borovkova Eugeniya A. Orlova Margarita A. Simonyan Vladimir I. Ponomarenko Viktoriia V. Skazkina Vladimir I. Gridnev Boris P. Bezruchko Mikhail D. Prokhorov Anton R. Kiselev 《Biophysical journal》2021,120(13):2657-2664
The question of how much information the photoplethysmogram (PPG) signal contains on the autonomic regulation of blood pressure (BP) remains unsolved. This study aims to compare the low-frequency (LF) and high-frequency components of PPG and BP and assess their correlation with oscillations in interbeat (RR) intervals at similar frequencies. The PPG signal from the distal phalanx of the right index finger recorded using a reflective PPG sensor at green light, the BP signal from the left hand recorded using a Finometer, and RR intervals were analyzed. These signals were simultaneously recorded within 15 min in a supine resting condition in 17 healthy subjects (12 males and 5 females) aged 33 ± 9 years (mean ± SD). The study revealed the high coherence of LF components of PPG and BP with the LF component of RR intervals. The high-frequency components of these signals had low coherence. The analysis of the signal instantaneous phases revealed the presence of high-phase coherence between the LF components of PPG and BP. It is shown that the LF component of PPG is determined not only by local myogenic activity but also reflects the processes of autonomic control of BP. 相似文献
7.
Camille Turlure Viktoriia RadchukMichel Baguette Hans Van DyckNicolas Schtickzelle 《Journal of thermal biology》2011,36(3):173-180
Purpose
Temperature profoundly impacts on distribution and habitat-use of organisms. The development of ectothermous caterpillars does not depend on host plant quality only, but also on the availability of suitable thermal conditions. Selection for thermally favorable microclimates (i.e. behavioral thermoregulation) is a primary mechanism of temperature control, and caterpillars can be either (or alternately) temperature conformers (i.e. passively adopting ambient temperature conditions) or thermoregulators (i.e. able to some extent to elevate or decrease their body temperature relative to ambient temperature). Here, we addressed the functional significance of different structural vegetation elements for the behavioral thermoregulation by caterpillars of two butterfly species.Results
Weather conditions influenced the caterpillar detection probability within host plant patches, indicating that caterpillars can hide and use suitable microclimates provided by vegetation structures to cope with weather variations. This is why we (1) evaluated the heterogeneity in temperature conditions provided by these structures, (2) quantified the influence of ambient temperature and light intensity on caterpillar body temperature, and (3) tested how position on structure, substrate color and exposition influenced caterpillar body temperature. As expected, vegetation structures provided heterogeneous temperature and sun exposition conditions, while caterpillar body temperature was dependent on ambient temperature and light intensity. But body temperature was additionally influenced by the position on vegetation structures, substrate color and exposition.Conclusions
These results suggest that there is no unique and fixed structure in the vegetation subsuming the best thermal conditions for caterpillars. We argue that a better understanding of the thermal properties of vegetation structures is essential for correctly understanding caterpillar habitat-use and the behavioral mechanisms driving their body thermoregulation. Conceptually this means that thermal conditions should be included in the definition of a species' functional habitat. Practically this may influence the choice of appropriate habitat management for species of conservation concern. 相似文献8.
9.
Lazarenko L Babenko L Sichel LS Pidgorskyi V Mokrozub V Voronkova O Spivak M 《Probiotics and antimicrobial proteins》2012,4(2):78-89
The antibacterial activity of Lactobacillus casei IMV B-7280, Lact. acidophilus IMV B-7279, Bifidobacterium longum VK1, and B. bifidum VK2 strains or their various compositions in relation to Staphylococcus aureus in vitro and on models of experimental intravaginal staphylococcosis of mice was determined. It was found that under the influence of these strains and their various compositions, the in vitro growth of Staph. aureus was inhibited, and the number of colonies of Staph. aureus plated from the vagina of infected mice was significantly reduced. The antibacterial activity of these strains separately and in compositions correlated with their ability to improve the performance of the immune response. These strains were the most effective in the following compositions: Lact. casei IMV B-7280-B. longum VK1-B. bifidum VK2. Strains of Lact. casei IMV B-7280, Lact. acidophilus IMV B-7279, B. bifidum VK2, and B. longum VK1 are prospective components of future probiotic drugs efficient in treating staphylococcosis and for immunity correction. 相似文献
10.
Viktoriia Radchuk Stephanie Kramer‐Schadt Joerns Fickel Andreas Wilting 《Journal of Biogeography》2019,46(10):2350-2362